參考文獻 |
[1] A. Ciaravella, G. M. Mu˜noz Caro, A. Jim´enez-Escobar, C. Cecchi-Pestellini, L.-C.
Hsiao, C.-H. Huang, and Y.-J. Chen, “X-ray processing of a realistic ice mantle can
explain the gas abundances in protoplanetary disks,” Proceedings of the National
Academy of Sciences, vol. 117, no. 28, pp. 16149–16153, 2020.
[2] C.-H. Huang, A. Ciaravella, C. Cecchi-Pestellini, A. Jim´enez-Escobar, L.-C. Hsiao,
C.-C. Huang, P.-C. Chen, N.-E. Sie, and Y.-J. Chen, “Effects of 150–1000 ev electron
impacts on pure carbon monoxide ices using the interstellar energetic-process system
(ieps),” The Astrophysical Journal, vol. 889, no. 1, p. 57, 2020.
[3] P. Ehrenfreund and W. Schutte, “Iso observations of interstellar ices: Implications for
the pristinity of comets,” Advances in Space Research, vol. 25, no. 11, pp. 2177–2188,
2000.
[4] A. A. Boogert, P. A. Gerakines, and D. C. Whittet, “Observations of the icy universe,” Annual Review of Astronomy and Astrophysics, vol. 53, pp. 541–581, 2015.
[5] K. I. Oberg, A. A. Boogert, K. M. Pontoppidan, S. Van den Broek, E. F. ¨
Van Dishoeck, S. Bottinelli, G. A. Blake, and N. J. Evans, “The spitzer ice legacy:
Ice evolution from cores to protostars,” The Astrophysical Journal, vol. 740, no. 2,
p. 109, 2011.
[6] P. Ehrenfreund, A. Boogert, P. Gerakines, A. Tielens, and E. Van Dishoeck, “Infrared
spectroscopy of interstellar apolar ice analogs,” Astronomy and Astrophysics, v. 328,
p. 649-669 (1997), vol. 328, pp. 649–669, 1997.
[7] R. Mart´ın-Dom´enech, P. Maksiutenko, K. I. Oberg, and M. Rajappan, “Exploring ¨
the chemistry induced by energetic processing of the h2-bearing, co-rich apolar ice
layer,” The Astrophysical Journal, vol. 902, no. 2, p. 116, 2020.
[8] H. Cuppen, E. Van Dishoeck, E. Herbst, and A. Tielens, “Microscopic simulation
of methanol and formaldehyde ice formation in cold dense cores,” Astronomy &
Astrophysics, vol. 508, no. 1, pp. 275–287, 2009.
20[9] K.-J. Chuang, G. Fedoseev, S. Ioppolo, E. Van Dishoeck, and H. Linnartz, “Hatom addition and abstraction reactions in mixed co, h 2 co and ch 3 oh ices–an
extended view on complex organic molecule formation,” Monthly Notices of the Royal
Astronomical Society, vol. 455, no. 2, pp. 1702–1712, 2016.
[10] R. T. Garrod, “Three-dimensional, off-lattice monte carlo kinetics simulations of
interstellar grain chemistry and ice structure,” The Astrophysical Journal, vol. 778,
no. 2, p. 158, 2013.
[11] I. R. Cooke, K. I. Oberg, E. C. Fayolle, Z. Peeler, and J. B. Bergner, “Co diffusion ¨
and desorption kinetics in co2 ices,” The Astrophysical Journal, vol. 852, no. 2, p. 75,
2018.
[12] K. A. Gadallah, D. Marchione, S. P. Koehler, and M. R. McCoustra, “Molecular
hydrogen production from amorphous solid water during low energy electron irradiation,” Physical Chemistry Chemical Physics, vol. 19, no. 4, pp. 3349–3357, 2017.
[13] N. G. Petrik, R. J. Monckton, S. P. Koehler, and G. A. Kimmel, “Electron-stimulated
reactions in layered co/h2o films: Hydrogen atom diffusion and the sequential hydrogenation of co to methanol,” The Journal of Chemical Physics, vol. 140, no. 20,
2014.
[14] S. Pilling, W. Rocha, F. Freitas, and P. Da Silva, “Photochemistry and desorption induced by x-rays in water rich astrophysical ice analogs: implications for the
moon enceladus and other frozen space environments,” RSC advances, vol. 9, no. 49,
pp. 28823–28840, 2019.
[15] A. Jim´enez-Escobar, A. Ciaravella, C. Cecchi-Pestellini, G. M. M. Caro, C.-H. Huang,
N.-E. Sie, and Y.-J. Chen, “X-ray-induced diffusion and mixing in layered astrophysical ices,” The Astrophysical Journal, vol. 926, no. 2, p. 176, 2022.
[16] K. I. Oberg, G. W. Fuchs, Z. Awad, H. J. Fraser, S. Schlemmer, E. F. Van Dishoeck, ¨
and H. Linnartz, “Photodesorption of co ice,” The Astrophysical Journal, vol. 662,
no. 1, p. L23, 2007.
[17] Y.-J. Chen, K.-J. Chuang, G. M. Caro, M. Nuevo, C.-C. Chu, T.-S. Yih, W.-H. Ip,
and C.-Y. Wu, “Vacuum ultraviolet emission spectrum measurement of a microwavedischarge hydrogen-flow lamp in several configurations: Application to photodesorption of co ice,” The Astrophysical Journal, vol. 781, no. 1, p. 15, 2013.
[18] N.-E. Sie, G. M. Caro, Z.-H. Huang, R. Mart´ın-Dom´enech, A. Fuente, and Y.-J.
Chen, “On the photodesorption of co2 ice analogs: The formation of atomic c in the
ice and the effect of the vuv emission spectrum,” The Astrophysical Journal, vol. 874,
no. 1, p. 35, 2019.
21[19] L. d’Hendecourt and L. Allamandola, “Time dependent chemistry in dense molecular clouds. iii-infrared band cross sections of molecules in the solid state at 10 k,”
Astronomy and Astrophysics Supplement Series (ISSN 0365-0138), vol. 64, no. 3,
June 1986, p. 453-467., vol. 64, pp. 453–467, 1986.
[20] W. Hagen, A. Tielens, and J. Greenberg, “The infrared spectra of amorphous solid
water and ice ic between 10 and 140 k,” Chemical Physics, vol. 56, no. 3, pp. 367–379,
1981.
[21] G. J. Jiang, W. B. Person, and K. G. Brown, “Absolute infrared intensities and band
shapes in pure solid co and co in some solid matrices,” The Journal of Chemical
Physics, vol. 62, no. 4, pp. 1201–1211, 1975.
[22] M. Bouilloud, N. Fray, Y. B´enilan, H. Cottin, M.-C. Gazeau, and A. Jolly, “Bibliographic review and new measurements of the infrared band strengths of pure
molecules at 25 k: H2o, co2, co, ch4, nh3, ch3oh, hcooh and h2co,” Monthly Notices
of the Royal Astronomical Society, vol. 451, no. 2, pp. 2145–2160, 2015.
[23] C. J. Bennett and R. I. Kaiser, “On the formation of glycolaldehyde (hcoch2oh) and
methyl formate (hcooch3) in interstellar ice analogs,” The Astrophysical Journal,
vol. 661, no. 2, p. 899, 2007.
[24] L. Stief, V. Decarlo, and J. Hillman, “Vacuum-ultraviolet photochemistry. ii. solidand gas-phase photolysis of methane—water systems,” The Journal of Chemical
Physics, vol. 43, no. 7, pp. 2490–2496, 1965.
[25] L. Krim and M. Jonusas, “Vuv photolysis of ch4–h2o mixture in methane-rich ices:
Formation of large complex organic molecules in astronomical environments,” Low
Temperature Physics, vol. 45, no. 6, pp. 606–614, 2019.
[26] H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guilmain, N. de Jonge,
and D. Drouin, “Three-dimensional electron microscopy simulation with the casino
monte carlo software,” Scanning, vol. 33, no. 3, pp. 135–146, 2011.
[27] M. Bertin, E. C. Fayolle, C. Romanzin, K. I. Oberg, X. Michaut, A. Moudens, ¨
L. Philippe, P. Jeseck, H. Linnartz, and J.-H. Fillion, “Uv photodesorption of interstellar co ice analogues: from subsurface excitation to surface desorption,” Physical
Chemistry Chemical Physics, vol. 14, no. 28, pp. 9929–9935, 2012.
[28] P. Ghesquiere, T. Mineva, D. Talbi, P. Theul´e, J. Noble, and T. Chiavassa, “Diffusion
of molecules in the bulk of a low density amorphous ice from molecular dynamics
simulations,” Physical Chemistry Chemical Physics, vol. 17, no. 17, pp. 11455–11468,
2015.
22[29] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption,
scattering, transmission, and reflection at e= 50-30,000 ev, z= 1-92,” Atomic data
and nuclear data tables, vol. 54, no. 2, pp. 181–342, 1993.
[30] P. Gerakines, W. Schutte, J. Greenberg, and E. F. van Dishoeck, “The infrared band
strengths of h2o, co and co2 in laboratory simulations of astrophysical ice mixtures,”
arXiv preprint astro-ph/9409076, 1994.
[31] A. Ciaravella, A. Jim´enez-Escobar, C. Cecchi-Pestellini, C. Huang, N. Sie, G. M.
Caro, and Y. Chen, “Synthesis of complex organic molecules in soft x-ray irradiated
ices,” The Astrophysical Journal, vol. 879, no. 1, p. 21, 2019.
[32] E. C. Fayolle, M. Bertin, C. Romanzin, X. Michaut, K. I. Oberg, H. Linnartz, ¨
and J.-H. Fillion, “Co ice photodesorption: a wavelength-dependent study,” The
Astrophysical journal letters, vol. 739, no. 2, p. L36, 2011. |