參考文獻 |
[1] 黃寶輝、唐毓慧、蔡民雄, 第一原理計算方法介紹與自旋傳輸計算之應用, 物理雙月刊 43 (2021) 17–26. URL: http://lawdata.com.tw/tw/detail.aspx?no=446026.
[2] H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, Y. Suzuki, Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions, Nature Physics 4 (2008) 37–41. doi:10.1038/nphys784.
[3] X. Han, X. Wang, C. Wan, G. Yu, X. Lv, Spin-orbit torques: Materials, physics, and devices, Applied Physics Letters 118 (2021) 120502. doi:10.1063/5.0039147.
[4] N. Locatelli, V. Cros, J. Grollier, Spin-torque building blocks, Nature Materials 13 (2013) 11–20. doi:10.1038/nmat3823.
[5] Y. Niimi, Y. Otani, Reciprocal spin hall effects in conductors with strong spin–orbit coupling: a review, Reports on Progress in Physics 78 (2015) 124501. doi:10.1088/0034-4885/78/12/ 124501.
[6] V.P.Amin,P.M.Haney,M.D.Stiles,Interfacialspin–orbittorques,JournalofAppliedPhysics 128 (2020) 151101. doi:10.1063/5.0024019.
[7] P. Giannozzi, Notes on pseudopotential generation, 2019. URL: https://www. quantum-espresso.org/wp-content/uploads/2022/03/pseudo-gen.pdf.
[8] M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge University Press, 2008. doi:10.1017/cbo9780511755606.
[9] B.-H. Huang, C.-C. Chao, Y.-H. Tang, Thickness dependence of spin torque effect in Fe/MgO/Fe magnetic tunnel junction: Implementation of divide-and-conquer with first-principles calculation, AIP Advances 11 (2021) 015036. doi:10.1063/9.0000117.
[10] E. Y. Tsymbal, Ž. Igor, Spintronics Handbook: Spin Transport and Magnetism, Second Edition, CRC Press, 2019. doi:10.1201/9780429423079.
[11] J. E. Hirsch, Spin hall effect, Physical Review Letters 83 (1999) 1834–1837. doi:10.1103/ PhysRevLett.83.1834.
[12] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald, Universal Intrinsic Spin Hall Effect, Physical Review Letters 92 (2004) 126603. doi:10.1103/physrevlett.92. 126603.
[13] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. Back, T. Jungwirth, Spin hall effects, Reviews of Modern Physics 87 (2015) 1213–1260. doi:10.1103/revmodphys.87.1213.
[14] M. Tian, Y. Zhu, M. Jalali, W. Jiang, J. Liang, Z. Huang, Q. Chen, Z. Zeng, Y. Zhai, Two-dimensional van der waals materials for spin-orbit torque applications, Frontiers in Nanotechnology 3 (2021). doi:10.3389/fnano.2021.732916.
[15] K.-S. Lee, D. Go, A. Manchon, P. M. Haney, M. D. Stiles, H.-W. Lee, K.-J. Lee, Angular dependence of spin-orbit spin-transfer torques, Physical Review B 91 (2015) 144401. doi:10. 1103/PhysRevB.91.144401.
[16] H. Nakayama, Y. Kanno, H. An, T. Tashiro, S. Haku, A. Nomura, K. Ando, Rashba-Edelstein Magnetoresistance in Metallic Heterostructures, Physical Review Letters 117 (2016) 116602. doi:10.1103/physrevlett.117.116602.
[17] J. Z. Sun, Spin-current interaction with a monodomain magnetic body: A model study, Physical Review B 62 (2000) 570–578. doi:10.1103/physrevb.62.570.
[18] A. A. Timopheev, R. Sousa, M. Chshiev, L. D. Buda-Prejbeanu, B. Dieny, Respective influence of in-plane and out-of-plane spin-transfer torques in magnetization switching of perpendicular magnetic tunnel junctions, Physical Review B 92 (2015) 104430. doi:10.1103/physrevb.92. 104430.
[19] M. Born, R. Oppenheimer, Zur quantentheorie der molekeln, Annalen der Physik 389 (1927) 457–484. doi:10.1002/andp.19273892002.
[20] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O’Brien, A variational eigenvalue solver on a photonic quantum processor, Nature Communications 5 (2014) 4213. doi:10.1038/ncomms5213.
[21] V. Fock, Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems, Zeitschrift für Physik 61 (1930) 126–148. doi:10.1007/bf01340294.
[22] V.Fock,”Selfconsistentfield”mitAustauschfürNatrium,ZeitschriftfürPhysik62(1930)795– 805. doi:10.1007/bf01330439.
[23] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, 2004. doi:10.1017/cbo9780511805769.
[24] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review 136 (1964) B864–B871. doi:10.1103/physrev.136.b864.
[25] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140 (1965) A1133–A1138. doi:10.1103/physrev.140.a1133.
[26] J. Thijssen, Computational Physics, Cambridge University Press, 2007. doi:10.1017/ cbo9781139171397.
[27] E. Engel, R. M. Dreizler, Density Functional Theory: An Advanced Course, Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-14090-7.
[28] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23 (1981) 5048–5079. doi:10.1103/physrevb.23.5048.
[29] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200– 1211. doi:10.1139/p80-159.
[30] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B 45 (1992) 13244–13249. doi:10.1103/physrevb.45.13244.
[31] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865–3868. doi:10.1103/physrevlett.77.3865.
[32] Y. Zhang, W. Yang, Commenton “generalized gradient approximation made simple”, Physical Review Letters 80 (1998) 890–890. doi:10.1103/physrevlett.80.890.
[33] B. Hammer, L. B. Hansen, J. K. Nørskov, Improved adsorption energetic swithin density-functional theory using revised perdew-burke-ernzerhof functionals, Physical Review B 59 (1999) 7413– 7421. doi:10.1103/physrevb.59.7413.
[34] D. R. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494–1497. doi:10.1103/PhysRevLett.43.1494.
[35] A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Optimized pseudopotentials, Phys. Rev. B 41 (1990) 1227–1230. doi:10.1103/PhysRevB.41.1227.
[36] N. Troullier, J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993–2006. doi:10.1103/PhysRevB.43.1993.
[37] D. R. Hamann, Optimized norm-conserving vanderbilt pseudopotentials, Phys. Rev. B 88 (2013) 085117. doi:10.1103/PhysRevB.88.085117.
[38] C. Kittel, P. McEuen, J. W. . Sons, Introduction to Solid State Physics, John Wiley & Sons, 2005. URL: https://books.google.com.tw/books?id=rAMujwEACAAJ.
[39] N. Ashcroft, N. Mermin, Solid State Physics, Cengage Learning, 2011. URL: https://books. google.com.tw/books?id=x_s_YAAACAAJ.
[40] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, 1995. doi:10.1017/ CBO9780511805776.
[41] J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Physical Review B 63 (2001) 245407. doi:10.1103/physrevb.63.245407.
[42] Y. Zhu, L. Liu, H. Guo, Atomistic Simulation of Quantum Transport in Nanoelectronic Devices: (With CD-ROM), WORLD SCIENTIFIC, 2016. doi:10.1142/10072.
[43] M. Soriano, J. J. Palacios, Theory of projections with nonorthogonal basis sets: Partitioning techniques and effective hamiltonians, Physical Review B 90 (2014) 075128. doi:10.1103/ PhysRevB.90.075128.
[44] M. Pourfath, The Non-Equilibrium Green’s Function Method for Nanoscale Device Simulation, Springer Vienna, 2014. URL: http://dx.doi.org/10.1007/978-3-7091-1800-9. doi:10. 1007/978-3-7091-1800-9.
[45] L. Keldysh, Ionization in the field of a strong electromagnetic wave, Journal of Experimental and Theoretical Physics 20 (1965) 1307–1314.
[46] A.-P. Jauho, N.S. Wingreen, Y. Meir, Time-dependent transport in interacting and noninteracting resonant-tunneling systems, Physical Review B 50 (1994) 5528–5544. doi:10.1103/PhysRevB. 50.5528.
[47] Y.-H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, R. Car, Influence of asymmetry on bias behavior of spin torque, Physical Review B 81 (2010) 054437. doi:10.1103/PhysRevB.81.054437.
[48] B.-H. Huang, Y.-H. Fu, C.-C. Kaun, Y.-H. Tang, Determining perpendicular magnetic anisotropy in Fe/MgO/Fe magnetic tunnel junction: A DFT-based spin–orbit torque method, Journal of Magnetism and Magnetic Materials 585 (2023) 171098. doi:10.1016/j.jmmm.2023.171098.
[49] S. Zhang, Z. Li, Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets, Physical Review Letters 93 (2004) 127204. doi:10.1103/PhysRevLett.93. 127204.
[50] D. Ralph, M. Stiles, Spin transfer torques, Journal of Magnetism and Magnetic Materials 320 (2008) 1190–1216. doi:10.1016/j.jmmm.2007.12.019.
[51] A. Manchon, S. Zhang, Theory of spin torque due to spin-orbit coupling, Physical Review B 79 (2009) 094422. doi:10.1103/PhysRevB.79.094422.
[52] P. M. Haney, M. D. Stiles, Current-Induced Torques in the Presence of Spin-Orbit Coupling, Physical Review Letters 105 (2010) 126602. doi:10.1103/physrevlett.105.126602.
[53] P. M. Haney, D. Waldron, R. A. Duine, A. S. Núñez, H. Guo, A. H. MacDonald, Current-induced order parameter dynamics: Microscopic theory applied to Co/Cu/Co spin valves, Physical Review B 76 (2007) 024404. doi:10.1103/PhysRevB.76.024404.
[54] A. Kalitsov, I. Theodonis, N. Kioussis, M. Chshiev, W. H. Butler, A. Vedyayev, Spin-polarized current-induced torque in magnetic tunnel junctions, Journal of Applied Physics 99 (2006) 08G501. doi:10.1063/1.2151796.
[55] T. N. Todorov, Tight-binding simulation of current-carrying nanostructures, Journal of Physics: Condensed Matter 14 (2002) 3049–3084. doi:10.1088/0953-8984/14/11/314.
[56] D. Go, F. Freimuth, J.-P. Hanke, F. Xue, O. Gomonay, K.-J. Lee, S. Blügel, P. M. Haney, H.-W. Lee, Y. Mokrousov, Theory of current-induced angular momentum transfer dynamics in spin-orbit coupled systems, Physical Review Research 2 (2020) 033401. doi:10.1103/PhysRevResearch. 2.033401.
[57] L. Landau, E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, in: Perspectives in Theoretical Physics, Elsevier, 1992, pp. 51–65. doi:10.1016/ b978-0-08-036364-6.50008-9.
[58] T. Gilbert, Classics in magnetics a phenomenological theory of damping in ferromagnetic materials, IEEE Transactions on Magnetics 40 (2004) 3443–3449. doi:10.1109/tmag.2004. 836740.
[59] K. Dolui, M. D. Petrović, K. Zollner, P. Plecháč, J. Fabian, B. K. Nikolić, Proximity spin– orbit torque on a two-dimensional magnet within van der waals heterostructure: Current-driven antiferromagnet-to-ferromagnet reversible nonequilibrium phase transition in bilayer CrI3, Nano Letters 20 (2020) 2288–2295. doi:10.1021/acs.nanolett.9b04556.
[60] I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, W. H. Butler, Anomalous bias dependence of spin torque in magnetic tunnel junctions, Physical Review Letters 97 (2006) 237205. doi:10. 1103/PhysRevLett.97.237205.
[61] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport, Physical Review B 65 (2002) 165401. doi:10.1103/ PhysRevB.65.165401.
[62] Y.-H. Tang, B.-H. Huang, Underlying mechanism for exchange bias in single-molecule magnetic junctions, Physical Review Research 3 (2021) 033264. doi:10.1103/PhysRevResearch.3. 033264.
[63] C. Leighton, M. R. Fitzsimmons, P. Yashar, A. Hoffmann, J. Nogués, J. Dura, C. F. Majkrzak, I. K. Schuller, Two-stage magnetization reversal in exchange biased bilayers, Physical Review Letters 86 (2001) 4394–4397. doi:10.1103/PhysRevLett.86.4394.
[64] W.-G. Wang, M. Li, S. Hageman, C. L. Chien, Electric-field-assisted switching in magnetic tunnel junctions, Nature 11 (2012) 64–68. doi:10.1038/nmat3171.
[65] J. Nogués, I. K. Schuller, Exchange bias, Journal of Magnetism and Magnetic Materials 192 (1999) 203–232. doi:10.1016/s0304-8853(98)00266-2.
[66] B.-Y. Wang, C.-C. Chiu, W.-C. Lin, M.-T. Lin, Enhanced perpendicular magnetic anisotropy in Fe/Mn bilayers by incorporating ultrathin ferromagnetic underlayer through magnetic proximity effect, Applied Physics Letters 103 (2013). doi:10.1063/1.4816478.
[67] P. K. Srivastava, Y. Hassan, H. Ahn, B. Kang, S.-G. Jung, Y. Gebredingle, M. Joe, M. S. Abbas, T. Park, J.-G. Park, K.-J. Lee, C. Lee, Exchange bias effect in ferro-/antiferromagnetic van der waals heterostructures, Nano Letters 20 (2020) 3978–3985. doi:10.1021/acs.nanolett. 0c01176.
[68] Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, B. T. Jonker, Exchange bias of the interface spin system at the fe/mgo interface, Nature Nanotechnology 8 (2013) 438–444. doi:10.1038/nnano.2013.94.
[69] P.-H. Lin, B.-Y. Yang, M.-H. Tsai, P.-C. Chen, K.-F. Huang, H.-H. Lin, C.-H. Lai, Manipulating exchange bias by spin–orbit torque, Nature Materials 18 (2019) 335–341. doi:10.1038/ s41563-019-0289-4.
[70] P. M. Haney, C. Heiliger, M. D. Stiles, Bias dependence of magnetic exchange interactions: Application to interlayer exchange coupling in spin valves, Physical Review B 79 (2009) 054405. doi:10.1103/PhysRevB.79.054405.
[71] Y.-H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, R. Car, Controlling the nonequilibrium interlayer exchange coupling in asymmetric magnetic tunnel junctions, Physical Review Letters 103 (2009) 057206. doi:10.1103/PhysRevLett.103.057206.
[72] C. Ortiz Pauyac, A. Kalitsov, A. Manchon, M. Chshiev, Spin-transfer torque in spin filter tunnel junctions, Physical Review B 90 (2014) 235417. doi:10.1103/PhysRevB.90.235417.
[73] Y.-H. Tang, F.-C. Chu, N. Kioussis, Dual control of giant field-like spin torque in spin filter tunnel junctions, Scientific Reports 5 (2015) 11341. doi:10.1038/srep11341.
[74] Y.-H. Tang, Z.-W. Huang, B.-H. Huang, Analytic expression for the giant fieldlike spin torque in spin-filter magnetic tunnel junctions, Physical Review B 96 (2017) 064429. doi:10.1103/ PhysRevB.96.064429.
[75] J. M. De Teresa, A. Barthélémy, A. Fert, J. P. Contour, F. Montaigne, P. Seneor, Role of metal- oxide interface in determining the spin polarization of magnetic tunnel junctions, Science 286 (1999) 507–509. doi:10.1126/science.286.5439.507.
[76] Z. H. Xiong, D. Wu, Z. V. Vardeny, J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427 (2004) 821–824. doi:10.1038/nature02325.
[77] J. C. Slonczewski, Currents, torques, and polarization factors in magnetic tunnel junctions, Physical Review B 71 (2005) 024411. doi:10.1103/PhysRevB.71.024411.
[78] S. Sanvito, The rise of spinterface science, Nature Physics 6 (2010) 562–564. doi:10.1038/ nphys1714.
[79] C.-H. Hsu, Y.-H. Chu, C.-I. Lu, P.-J. Hsu, S.-W. Chen, W.-J. Hsueh, C.-C. Kaun, M.-T. Lin, Spin- polarized transport through single manganese phthalocyanine molecules on a co nanoisland, The Journal of Physical Chemistry C 119 (2015) 3374–3378. doi:10.1021/jp510930y.
[80] M. Cinchetti, V. A. Dediu, L. E. Hueso, Activating the molecular spinterface, Nature Materials 16 (2017) 507–515. doi:10.1038/nmat4902.
[81] X. Zhang, J. Tong, L. Ruan, X. Yao, L. Zhou, F. Tian, G. Qin, Interface hybridization and spin filter effect in metal-free phthalocyanine spin valves, Physical Chemistry Chemical Physics 22 (2020) 11663–11670. doi:10.1039/D0CP00651C.
[82] R. Yamada, M. Noguchi, H. Tada, Magnetoresistance of single molecular junctions measured by a mechanically controllable break junction method, Applied Physics Letters 98 (2011) 053110. doi:10.1063/1.3549190.
[83] R. J. Brooke, C. Jin, D. S. Szumski, R. J. Nichols, B.-W. Mao, K. S. Thygesen, W. Schwarzacher, Single-molecule electrochemical transistor utilizing a nickel-pyridyl spinterface, Nano Letters 15 (2015) 275–280. doi:10.1021/nl503518q.
[84] S. Ding, Y. Tian, Y. Li, W. Mi, H. Dong, X. Zhang, W. Hu, D. Zhu, Inverse magnetoresistance in polymer spin valves, ACS Applied Materials & Interfaces 9 (2017) 15644–15651. doi:10.1021/ acsami.7b02804.
[85] A. C. Aragonès, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó, J. L. Palma, N. Tao, J. M. Ugalde, E. Giralt, I. Díez-Pérez, V. Mujica, Measuring the spin-polarization power of a single chiral molecule, Small 13 (2017) 1602519. doi:10.1002/smll.201602519.
[86] G. Ke, C. Duan, F. Huang, X. Guo, Electrical and spin switches in single-molecule junctions, InfoMat 2 (2020) 92–112. doi:10.1002/inf2.12068.
[87] D. Liu, Y. Hu, H. Guo, X. F. Han, Magnetic proximity effect at the molecular scale: First-principles calculations, Physical Review B 78 (2008) 193307. doi:10.1103/PhysRevB.78.193307.
[88] S. Mandal, R. Pati, What determines the sign reversal of magnetoresistance in a molecular tunnel junction?, ACS Nano 6 (2012) 3580–3588. doi:10.1021/nn3006569.
[89] D. Li, R. Banerjee, S. Mondal, I. Maliyov, M. Romanova, Y. J. Dappe, A. Smogunov, Symmetry aspects of spin filtering in molecular junctions: Hybridization and quantum interference effects, Physical Review B 99 (2019) 115403. doi:10.1103/PhysRevB.99.115403.
[90] S. Li, Y. Wang, Y. Wang, S. Sanvito, S. Hou, High-performance spin filters based on 1,2,4,5- tetrahydroxybenzene molecules attached to bulk nickel electrodes, The Journal of Physical Chemistry C 125 (2021) 6945–6953. doi:10.1021/acs.jpcc.1c00773.
[91] Y.-H. Tang, B.-H. Huang, Manipulation of giant field-like spin torque in amine-ended single- molecule magnetic junctions, The Journal of Physical Chemistry C 122 (2018) 20500–20505. doi:10.1021/acs.jpcc.8b03772.
[92] S. Haku, A. Ishikawa, A. Musha, H. Nakayama, T. Yamamoto, K. Ando, Surface rashba-edelstein spin-orbit torque revealed by molecular self-assembly, Physical Review Applied 13 (2020) 044069. doi:10.1103/PhysRevApplied.13.044069.
[93] M. Ratner, A brief history of molecular electronics, Nature Nanotechnology 8 (2013) 378–381. doi:10.1038/nnano.2013.110.
[94] T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Chemical principles of single-molecule electronics, Nature Reviews Materials 1 (2016). doi:10.1038/natrevmats. 2016.2.
[95] P. Gehring, J. M. Thijssen, H. S. J. vander Zant, Single-molecule quantum-transport phenomenain break junctions, Nature Reviews Physics 1 (2019) 381–396. doi:10.1038/s42254-019-0055-1.
[96] B. Q. Xu, X. L. Li, X. Y. Xiao, H. Sakaguchi, N. J. Tao, Electromechanical and conductance switching properties of single oligothiophene molecules, Nano Letters 5 (2005) 1491–1495. doi:10.1021/nl050860j.
[97] B.-H. Huang, Y.-H. Tang, The detailed information of JUNPY package can be found at the website, 2016. URL: https://labstt.phy.ncu.edu.tw/junpy.
[98] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502. doi:10.1088/0953-8984/21/39/395502.
[99] D. Waldron, L. Liu, H. Guo, Ab initio simulation of magnetic tunnel junctions, Nanotechnology 18 (2007) 424026. doi:10.1088/0957-4484/18/42/424026.
[100] Y. Ke, K. Xia, H. Guo, Disorder scattering in magnetic tunnel junctions: Theory of nonequilibrium vertex correction, Physical Review Letters 100 (2008) 166805. doi:10.1103/PhysRevLett.100. 166805.
[101] D. J. P. de Sousa, P. M. Haney, D. L. Zhang, J. P. Wang, T. Low, Bidirectional switching assisted by interlayer exchange coupling in asymmetric magnetic tunnel junctions, Physical Review B 101 (2020) 081404. doi:10.1103/PhysRevB.101.081404.
[102] J. Xiao, A. Zangwill, M. D. Stiles, Macrospin models of spin transfer dynamics, Physical Review B 72 (2005) 014446. doi:10.1103/physrevb.72.014446.
[103] Y. H. Tang, C. J. Lin, Strain-enhanced spin injection in amine-ended single-molecule magnetic junctions, The Journal of Physical Chemistry C 120 (2016) 692–696. doi:10.1021/acs.jpcc. 5b09700.
[104] J. R. Petta, S. K. Slater, D. C. Ralph, Spin-dependent transport in molecular tunnel junctions, Physical Review Letters 93 (2004) 136601. doi:10.1103/PhysRevLett.93.136601.
[105] L. Bogani, W. Wernsdorfer, Molecular spintronics using single-molecule magnets, Nature Materials 7 (2008) 179–186. doi:10.1038/nmat2133.
[106] K.-R. Chiang, Y.-H. Tang, Effect of contact geometry on spin transport in amine-ended single- molecule magnetic junctions, ACS Omega 6 (2021) 19386–19391. doi:10.1021/acsomega. 1c00930.
[107] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction, Nature Materials 9 (2010) 721–724. doi:10.1038/nmat2804.
[108] M. Weinert, R. E. Watson, J. W. Davenport, Total-energy differences and eigenvalue sums, Physical Review B 32 (1985) 2115–2119. doi:10.1103/PhysRevB.32.2115.
[109] G. H. O. Daalderop, P. J. Kelly, M. F. H. Schuurmans, First-principles calculation of the magnetocrystalline anisotropy energy of iron, cobalt, and nickel, Physical Review B 41 (1990) 11919–11937. doi:10.1103/PhysRevB.41.11919.
[110] S. Peng, M.Wang, H. Yang, L. Zeng, J. Nan, J. Zhou, Y. Zhang, A. Hallal, M. Chshiev, K. L. Wang, Q. Zhang, W. Zhao, Origin of interfacial perpendicular magnetic anisotropy in MgO/CoFe/metallic capping layer structures, Scientific Reports 5 (2015) 18173. doi:10.1038/srep18173.
[111] S. Peng, W. Zhao, J. Qiao, L. Su, J. Zhou, H. Yang, Q. Zhang, Y. Zhang, C. Grezes, P. K. Amiri, K. L. Wang, Giant interfacial perpendicular magnetic anisotropy in MgO/CoFe/capping layer structures, Applied Physics Letters 110 (2017) 072403. doi:10.1063/1.4976517.
[112] X. Wang, R. Wu, D. shengWang, A. J. Freeman, Torque method for the theoretical determination of magnetocrystalline anisotropy, Physical Review B 54 (1996) 61–64. doi:10.1103/physrevb. 54.61.
[113] Š. Pick, Magnetic anisotropy calculation: implementation of the torque method into the recursion-technique scheme, Solid State Communications 111 (1999) 15–18. doi:10.1016/S0038-1098(99)00170-2.
[114] A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. Garello, P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Reviews of Modern Physics 91 (2019) 035004. doi:10.1103/RevModPhys.91.035004.
[115] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab inition total-energy calculations using a plane-wave basis set, Physical Review B 54 (1996) 11169–11186. doi:10.1103/physrevb.54.11169.
[116] G. Kresse, D. Joubert, From ultrasoft pseudopotential sto the projector augmented-wavemethod, Physical Review B5 9 (1999) 1758–1775. doi:10.1103/physrevb.59.1758.
[117] P. Haney, R. Duine, A. Núñez, A. MacDonald, Current-induced torques in magnetic metals: Beyond spin-transfer, Journal of Magnetism and Magnetic Materials 320 (2008) 1300–1311. doi:10.1016/j.jmmm.2007.12.020.
[118] C. Heiliger, M. D. Stiles, Ab initio studies of the spin-transfer torque in magnetic tunnel junctions, Physical Review Letters 100 (2008) 186805. doi:10. 1103/PhysRevLett.100.186805.
[119] X. Jia, K. Xia, Y. Ke, H. Guo, Nonlinear bias dependence of spin-transfer torque from atomic first principles, Physical Review B 84 (2011) 014401. doi:10.1103/PhysRevB.84.014401.
[120] J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, D. C. Ralph, Measurement of the spin-transfer-torque vector in magnetic tunnel junctions, Nature Physics 4 (2008) 67–71. doi:10.1038/nphys783.
[121] M. D. Stiles, A. Zangwill, Anatomy of spin-transfer torque, Physical Review B 66 (2002) 014407. doi:10.1103/PhysRevB.66.014407.
[122] J. C. Slonczewski, Mechanism of interlayer exchange in magnetic multilayers, Journal of Magnetism and Magnetic Materials 126 (1993) 374–379. doi:10.1016/0304-8853(93)90630-k.
[123] P. Bruno, Theory of interlayer magnetic coupling, Physical Review B 52 (1995) 411–439. doi:10.1103/PhysRevB.52.411.
[124] H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, K. H. Shin, First-principles investigation of the very large perpendicular magnetic anisotropy at Fe/MgO and Co/MgO interfaces, Physical Review B 84 (2011) 054401. doi:10.1103/physrevb.84.054401.
[125] B. Dieny, M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications, Reviews of Modern Physics 89 (2017) 025008. doi:10.1103/revmodphys.89.025008.
[126] B.-H. Huang, Y.-F. Lai, Y.-H. Tang, Validity of DFT-based spin-orbit torque calculation for perpendicular magnetic anisotropy in iron thin films, AIP Advances 13 (2023) 015034. doi:10.1063/9.0000481.
[127] S. Shi, Y. Ou, S. V. Aradhya, D. C. Ralph, R. A. Buhrman, Fast low-current spin-orbit-torque switching of magnetic tunnel junctions through atomic modifications of the free-layer interfaces, Physical Review Applied 9 (2018) 011002. doi:10.1103/PhysRevApplied.9.011002.
[128] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, R. A. Buhrman, Spin-torque switching with the giant spin hall effect of tantalum, Science 336 (2012) 555–558. doi:10.1126/science.1218197.
[129] L. Zhu, D. C. Ralph, R. A. Buhrman, Spin-orbit torques in heavy-metal–ferromagnet bilayers with varying strengths of interfacial spin-orbit coupling, Physical Review Letters 122 (2019) 077201. doi:10.1103/PhysRevLett.122.077201.
[130] L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, R. A. Buhrman, Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect, Physical Review Letters 109 (2012) 096602. doi:10.1103/physrevlett.109.096602.
[131] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel, S. Auffret, O. Boulle, G. Gaudin, P. Gambardella, Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures, Nature Nanotechnology 8 (2013) 587–593. doi:10.1038/nnano.2013.145.
[132] V. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Communications 73 (1990) 233–235. doi:10.1016/0038-1098(90)90963-c.
[133] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476 (2011) 189–193. doi:10.1038/nature10309.
[134] I. Shin, W. J. Cho, E. An, S. Park, H. Jeong, S. Jang, W. J. Baek, S. Y. Park, D. Yang, J. H. Seo, G. Kim, M. N. Ali, S. Choi, H. Lee, J. S. Kim, S. D. Kim,
[135] G. Lee, Spin–orbit torque switching in an all‐van der waals heterostructure, Advanced Materials 34 (2022) 2101730. doi:10.1002/adma.202101730. P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, M. D. Stiles, Current-induced torques and interfacial spin-orbit coupling, Physical Review B 88 (2013) 214417. doi:10.1103/physrevb.88.214417.
[136] F. Mahfouzi, R. Mishra, P.-H. Chang, H. Yang, N. Kioussis, Microscopic origin of spin-orbit torque in ferromagnetic heterostructures: A first-principles approach, Physical Review B 101 (2020) 060405. doi:10.1103/physrevb.101.060405.
[137] K.-W. Kim, K.-J. Lee, J. Sinova, H.-W. Lee, M. D. Stiles, Spin-orbit torques from interfacial spin-orbit coupling for various interfaces, Physical Review B 96 (2017) 104438. doi:10.1103/physrevb.96.104438.
[138] H. Xu, J. Wei, H. Zhou, J. Feng, T. Xu, H. Du, C. He, Y. Huang, J. Zhang, Y. Liu, H. Wu, C. Guo, X. Wang, Y. Guang, H. Wei, Y. Peng, W. Jiang, G. Yu,
[139] X. Han, High spin hall conductivity in large‐area type‐ii dirac semimetal PtTe2, Advanced Materials 32 (2020) 2000513. doi:10.1002/adma.202000513. W. Lv, Z. Jia, B. Wang, Y. Lu, X. Luo, B. Zhang, Z. Zeng, Z. Liu, Electric-field control of spin–orbit torques in WS2/permalloy bilayers, ACS Applied Materials Interfaces 10 (2018) 2843–2849. doi:10.1021/acsami.7b16919.
[140] S. Fukami, T. Anekawa, C. Zhang, H. Ohno, A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration, Nature Nanotechnology 11 (2016) 621–625. doi:10.1038/nnano.2016.29.
[141] S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross, L. Nordström, E. K. U. Gross, First-principles approach to noncollinear magnetism: Towards spin dynamics, Physical Review Letters 98 (2007) 196405. doi:10.1103/PhysRevLett.98.196405.
[142] F. G. Eich, E. K. U. Gross, Transverse spin-gradient functional for noncollinear spin-density-functional theory, Physical Review Letters 111 (2013) 156401. doi:10.1103/PhysRevLett.111.156401.
[143] T. P. Pareek, P. Bruno, Spin coherence in a two-dimensional electron gas with rashba spin-orbit interaction, Physical Review B 65 (2002) 241305. doi:10.1103/PhysRevB.65.241305.
[144] I. Theodonis, A. Kalitsov, N. Kioussis, Enhancingspin-transfer torque through the proximity of quantum well states, Physical Review B 76 (2007) 224406. doi:10.1103/PhysRevB.76.224406.
[145] A. Kalitsov, S. A. Nikolaev, J. Velev, M. Chshiev, O. Mryasov, Intrinsic spin-orbit torque in a single-domain nanomagnet, Physical Review B 96 (2017) 214430. doi:10.1103/PhysRevB.96.214430.
[146] L. Fernández-Seivane, M. A. Oliveira, S. Sanvito, J. Ferrer, On-site approximation for spin–orbit coupling in linear combination of atomic orbitals density functional methods, Journal of Physics: Condensed Matter 18 (2006) 7999–8013. doi:10.1088/0953-8984/18/34/012. |