博碩士論文 111328003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.217.140.32
姓名 施俞佑(Yu-You Shi)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 類軸承邊壁對儲槽內圓柱顆粒體流動行為的影響
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 不同飽和態下兩相局部潰壩流場中流動行為之探討
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-31以後開放)
摘要(中) 由於人類經常會需要將顆粒儲存,使得儲槽是現代工業和農業中不可或缺的設備之
一,對於確保有效的原料管理、提高生產效率和確保產品質量至關重要。在進行相關研
究時,儲槽的設計和性能對於確保這些方面的有效性具有重要作用。而儲槽邊壁的特性,
如表面材料、粗糙度等,被證明在影響流體行為、排放性能等方面發揮著至關重要的作
用。
本研究使用類二維儲槽裝置,透過儲槽不同部分邊壁置換為類軸承,且變換儲槽半
角,並於實驗時填入固定重量圓柱顆粒進行排放。其中為了瞭解類軸承邊壁對不同顆粒
長度變化的影響,本研究利用直徑 dP = 4mm 而長度 dL 分別是 4mm、8mm 以及 12mm
的三種不同長度之 ABS 塑膠圓柱。本研究透過安息角實驗及摩擦角實驗來量測各顆粒
體的基本性質,以及與邊壁之間的摩擦效應。在儲槽卸料實驗過程中,則使用高速攝影
機進行影像拍攝,透過粒子影像測速技術 PIV (particle image velocimetry)和 MATLAB 進
行後續影像處理。此外,利用研究平均質量流率、速度場及停滯區,來了解置換邊壁為
類軸承對於整體流動性的影響和成效。
實驗結果顯示,將儲槽邊壁置換為類軸承邊壁確實會影響整體顆粒排放,質量流率
的改善會因為使用較長顆粒(圓柱顆粒長度與類軸承滾柱外徑的長徑比 R 較大)而更為顯
著,且漏斗半角越小則改善趨勢越明顯。本研究將各種類軸承邊壁安裝類型的儲槽內圓
柱顆粒排放改善情況與長徑比及漏斗半角的關係繪製成排放改善相圖,有明顯改善區、
過渡區及惡化區等三種改善相態,結果顯示全部安裝類軸承邊壁的排放改善相圖會與僅
漏斗部更換類軸承邊壁的改善相圖完全相同,表示漏斗部的類軸承邊壁之影響最大。另
外,明顯改善區的速度場會因為安裝類軸承邊壁,而使得出口速度明顯較大,且停滯區
縮小,進而使儲槽內顆粒的流動更趨向於質量流。
摘要(英) Since humans often need to store granular materials, storage silos have become
indispensable equipment in modern industry and agriculture, crucial for ensuring effective raw
material management, enhancing production efficiency, and maintaining product quality. The
design and performance of silos play a significant role in ensuring these aspects. The
characteristics of silo walls, such as surface material and wall friction, have been shown to
critically affect fluid behavior and discharge performance.
This study used a quasi-2D silo device, where different parts of the silo walls were replaced
with roller sidewall, and the half-angle of the silo was varied. Fixed-weight cylindrical particles
were filled for discharge during the experiments. To understand the impact of bearing-like walls
on particles of different lengths, ABS plastic cylinders with a diameter of dP = 4mm and lengths
of dL = 4mm, 8mm, and 12mm were used. The basic properties of each particle and the friction
effects between the particles and the walls were measured through repose angle experiments
and friction angle experiments. During the silo discharge experiments, high-speed cameras
were used to capture images, and subsequent image processing was performed using particle
image velocimetry (PIV) and MATLAB. Additionally, by studying the average mass flow rate,
improvement rate phase diagrams, velocity field, and stagnant zones, the impact and
effectiveness of replacing the walls with roller sidewall on overall flowability were understood.
The experimental results show that replacing the silo walls with roller sidewall indeed
affects the overall particle discharge. The improvement in mass flow rate is more significant
when using longer particles (with a larger length-to-diameter ratio R of cylindrical particles to
the outer diameter of the rollers), and the improvement trend is more pronounced with a smaller
hopper half-angle. This study plots the discharge improvement phase diagram for cylindrical
particle discharge in silos with various types of bearing-like wall installations, showing the
relationship between the length-to-diameter ratio and the hopper half-angle. There are three
improvement phases: improvement region, transition region, and deterioration region. The
results indicate that the discharge improvement phase diagram for fully installed roller sidewall
is identical to that for replacing only the hopper section with roller sidewall, suggesting that the
roller sidewall of the hopper section have the greatest impact. Additionally, in the significant
improvement zone, the velocity field is noticeably increased due to the installation of bearinglike walls, the stagnant zone is reduced, and the particle flow within the silo tends more towards
mass flow.
關鍵字(中) ★ 邊壁摩擦
★ 儲槽
★ 類軸承邊壁
★ 質量流率
★ 排放改善相圖
關鍵字(英) ★ wall friction
★ silo
★ roller sidewall
★ mass flow rate
★ discharge improvement phase diagram
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
符號說明 x
第一章 研究背景及目的 1
1.1 研究背景 1
1.2 儲槽相關文獻回顧 3
1.2.1 儲槽邊壁摩擦對於流動質量流率的影響 3
1.2.2 儲槽邊壁摩擦對於內部流動行為的影響 4
1.2.3 圓柱顆粒儲槽相關文獻回顧 5
1.3 研究動機 6
第二章 研究設備與步驟 12
2.1 實驗設備 12
2.2 研究方法 14
2.2.1 顆粒體安息角量測方法 14
2.2.2 顆粒體與邊壁摩擦角量測方法 15
2.2.3 排放質量變化分析法 15
2.2.4 平均質量流率分析法 16
2.2.5 流場速度分析法 16
2.2.6 儲槽內部停滯區分析法 17
2.3 實驗步驟 17
第三章 結果與討論 33
3.1 不同長度圓柱顆粒的性質量測 33
3.1.1 不同長度圓柱顆粒的安息角 33
3.1.2 不同長度圓柱顆粒與邊壁的摩擦角 34
3.2 儲槽顆粒排放行為 35
3.2.1 排放質量變化 35
3.2.2 儲槽內殘留量比較 36
3.2.3 平均質量流率變化 37
3.3 排放改善相圖及流動型態變化 39
3.3.1 不同邊壁安裝類型之排放改善相圖 39
3.3.2 儲槽顆粒排放的速度場變化 41
3.3.3 儲槽內部停滯區變化 42
第四章 結論 86
參考文獻 88
參考文獻 [1] A. W. Jenike, "Gravity flow of bulk solids". Bulletin No. 108, Utah Engineering Experiment Station, Univ. of Utah, Vol., 1961.
[2] A. W. Jenike, "Storage and flow of solids". Bulletin No. 123, Utah State University, Vol., 1964.
[3] I. Zuriguel, D. Maza, A. Janda, R. C. Hidalgo, and A. Garcimartín, "Velocity fluctuations inside two and three dimensional silos". Granular Matter, Vol. 21: pp. 1-9, 2019.
[4] K. To, P.-Y. Lai, and H. Pak, "Jamming of granular flow in a two-dimensional hopper". Physical Review Letters, Vol. 86(1): pp. 71, 2001.
[5] E. Rabinovich, H. Kalman, and P. F. Peterson, "Granular material flow regime map for planar silos and hoppers". Powder Technology, Vol. 377: pp. 597-606, 2021.
[6] J. Härtl, J. Ooi, and J. Theuerkauf. "A numerical study of the influence of particle friction and wall friction on silo flow". in Proceedings of the 4th International Symposium Reliable Flow of Particulate Solids (RELPOWFLOW IV), Tromsø, Norway. 2008.
[7] S. Ding, S. De Silva, and G. Enstad, "Effect of passive inserts on the granular flow from silos using numerical solutions". Particulate Science and Technology, Vol. 21(3): pp. 211-226, 2003.
[8] P. Tang and V. Puri, "Methods for minimizing segregation: a review". Particulate Science and Technology, Vol. 22(4): pp. 321-337, 2004.
[9] C. Lozano, G. Lumay, I. Zuriguel, R. Hidalgo, and A. Garcimartín, "Breaking arches with vibrations: the role of defects". Physical Review Letters, Vol. 109(6): pp. 068001, 2012.
[10] D. Gella, D. Maza, and I. Zuriguel. "Influence of particle size in silo discharge". in EPJ Web of Conferences. 2017. EDP Sciences.
[11] D. Gella, D. Maza, and I. Zuriguel, "Role of particle size in the kinematic properties of silo flow". Physical Review E, Vol. 95(5): pp. 052904, 2017.
[12] M. Zaki and M. S. Siraj, "Study of a flat-bottomed cylindrical silo with different orifice shapes". Powder Technology, Vol. 354: pp. 641-652, 2019.
[13] J.-U. Böhrnsen, H. Antes, M. Ostendorf, and J. Schwedes, "Silo discharge: measurement and simulation of dynamic behavior in bulk solids". Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, Vol. 27(1): pp. 71-76, 2004.
[14] M. A. Madrid and L. A. Pugnaloni, "Velocity profiles in forced silo discharges". Granular Matter, Vol. 21(3): pp. 76, 2019.
[15] N. Govender, D. N. Wilke, P. Pizette, and N.-E. Abriak, "A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code". Applied Mathematics and Computation, Vol. 319: pp. 318-336, 2018.
[16] N. Shah, B. Carballo-Ramirez, S. K. Birwa, N. Easwar, and S. Tewari, "Effect of Wall Friction on 2D Hopper Flow". arXiv Preprint arXiv:2103.09144, Vol., 2021.
[17] Q. Zheng, B. Xia, R. Pan, and A. Yu, "Prediction of mass discharge rate in conical hoppers using elastoplastic model". Powder Technology, Vol. 307: pp. 63-72, 2017.
[18] J. R. Darias, M. A. Madrid, and L. A. Pugnaloni, "Differential equation for the flow rate of discharging silos based on energy balance". Physical Review E, Vol. 101(5): pp. 052905, 2020.
[19] S. Zhang, P. Lin, C.-L. Wang, Y. Tian, J.-F. Wan, and L. Yang, "Investigating the influence of wall frictions on hopper flows". Granular Matter, Vol. 16: pp. 857-866, 2014.
[20] L. Babout, K. Grudzien, E. Maire, and P. J. Withers, "Influence of wall roughness and packing density on stagnant zone formation during funnel flow discharge from a silo: An X-ray imaging study". Chemical Engineering Science, Vol. 97: pp. 210-224, 2013.
[21] Y. Yu and H. Saxén, "Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres". Advanced Powder Technology, Vol. 22(3): pp. 324-331, 2011.
[22] Y. Li, N. Gui, X. Yang, J. Tu, and S. Jiang, "Effect of friction on pebble flow pattern in pebble bed reactor". Annals of Nuclear Energy, Vol. 94: pp. 32-43, 2016.
[23] L. Fullard, A. Godfrey, M. Manaf, C. Davies, A. Cliff, and M. Fukuoka, "Mixing experiments in 3D-printed silos; the role of wall friction and flow correcting inserts". Advanced Powder Technology, Vol. 31(5): pp. 1915-1923, 2020.
[24] T. Pongo, B. Fan, D. Hernández-Delfin, J. Török, R. Stannarius, R. C. Hidalgo, and T. Börzsönyi, "The role of the particle aspect ratio in the discharge of a narrow silo". New Journal of Physics, Vol. 24(10): pp. 103036, 2022.
[25] T. Börzsönyi, E. Somfai, B. Szabó, S. Wegner, P. Mier, G. Rose, and R. Stannarius, "Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment". New Journal of Physics, Vol. 18(9): pp. 093017, 2016.
[26] S. Wang, M. Zhuravkov, and S. Ji, "Granular flow of cylinder-like particles in a cylindrical hopper under external pressure based on DEM simulations". Soft Matter, Vol. 16(33): pp. 7760-7777, 2020.
[27] Q. Zheng and A. Yu, "Finite element investigation of the flow and stress patterns in conical hopper during discharge". Chemical Engineering Science, Vol. 129: pp. 49-57, 2015.
[28] Y. L. Dai, X. J. Liu, and D. Xia, "Flow characteristics of three typical granular materials in near 2D moving beds". Powder Technology, Vol. 373: pp. 220-231, 2020.
[29] D. Geldart, E. Abdullah, A. Hassanpour, L. Nwoke, and I. Wouters, "Characterization of powder flowability using measurement of angle of repose". China Particuology, Vol. 4(3-4): pp. 104-107, 2006.
[30] M. Alizadeh, A. Hassanpour, M. Pasha, M. Ghadiri, and A. Bayly, "The effect of particle shape on predicted segregation in binary powder mixtures". Powder Technology, Vol. 319: pp. 313-322, 2017.
[31] E. Stamhuis and W. Thielicke, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB". Journal of Open Research Software, Vol. 2(1): pp. 30, 2014.
[32] L. Sarno, A. Carravetta, Y.-C. Tai, R. Martino, M. Papa, and C.-Y. Kuo, "Measuring the velocity fields of granular flows–Employment of a multi-pass two-dimensional particle image velocimetry (2D-PIV) approach". Advanced Powder Technology, Vol. 29(12): pp. 3107-3123, 2018.
[33] C. J. Brown and J. Nielsen, "Silos: Fundamentals of theory, behaviour and design". CRC Press, 1998.
[34] I. Oldal and F. Safranyik, "Extension of silo discharge model based on discrete element method". Journal of Mechanical Science and Technology, Vol. 29: pp. 3789-3796, 2015.
指導教授 蕭述三 審核日期 2024-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明