博碩士論文 111328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.217.104.36
姓名 王俊逸(Jun-Yi Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 不同飽和態下兩相局部潰壩流場中流動行為之探討
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 直渠道顆粒流之顆粒密度分離效應★ 粉粒體於儲槽排放行為及氣泡現象之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討了不同飽和狀態下兩相局部潰壩流場中顆粒流動的行為,並對顆粒流動及沉積現象進行詳細分析。實驗使用一個長120 cm、寬10 cm、高50 cm的類二維水平流槽,填充預先準備好的顆粒柱,在相同的初始縱橫比(initial aspect ratio)下,透過氣壓缸快速抽離擋板,以模擬顆粒崩塌(dam-break)現象。實驗中,使用高速攝影機拍攝顆粒崩塌的動態過程,並進行影像處理分析。此外,採用粒子影像測速法(Particle image velocimetry, PIV)來計算顆粒流動時的速度場分布。實驗結果通過分析顆粒及間隙流體在不同特徵時間下的輪廓圖,研究顆粒的跳動距離和下降距離,計算顆粒前沿速率及下降速率,並探討其崩塌的持續時間。此外,通過開源軟體PIVlab分析每個特徵時間點的速度場分布,求得流動層面積,以了解顆粒流動行為在不同飽和度、間隙流體黏滯度及閘門開度條件下的變化。
由實驗結果得知,在不同液體飽和度、間隙流體黏滯度及閘門開度對兩相流顆粒崩塌的流動行為產生顯著影響。隨著液體飽和度的增加,顆粒跳動距離、下降高度及速率均顯著提升,這表明液體在顆粒間降低了內聚力,促進了顆粒的流動和擴散。閘門開度的增加,導致更多顆粒和液體混合物通過閘門,使得跳動距離增加,而下降高度和速率則呈現先上升後下降的趨勢,崩塌持續時間隨之縮短。隨著間隙流體黏滯度的增加,跳動距離相對減少,但在過飽和狀態時相差不大,主要是因為液體位能的影響較大導致黏滯度對跳動距離的影響減弱,而下降高度和速率在未飽和及過飽和狀態下均隨黏滯度增加而下降。在飽和狀態下,發現一個特別的情況,其甘油水溶液的下降速率較慢,但其下降的高度比水還要來的大,這是由於高黏滯度流體對顆粒運動的影響,使顆粒在較長時間內保持運動狀態,從而增加最終的下降高度,然而,由於流體阻力較大,使得顆粒初始運動速率相對較低。最後,我們從速度場剖面發現不同實驗組之間存在顯著的流動行為差異,包括速度大小和速度向量的變化。通過這些數據的分析,我們進行了流動層面積的比較,以比較各組實驗中顆粒和間隙流體的動態行為。
摘要(英) This study investigates the behavior of particle flow in a two-phase localized dam-break flow under different saturation conditions, with a detailed analysis of particle flow and deposition phenomena. The experiments were conducted using a quasi-two-dimensional horizontal flume, measuring 120 cm in length, 10 cm in width, and 50 cm in height. Prepared particle columns with the same initial aspect ratio were used, and the baffle was quickly removed using an air cylinder to simulate a dam-break scenario. High-speed cameras captured the dynamic process of particle collapse, and image processing analysis was performed. Additionally, Particle Image Velocimetry (PIV) was employed to calculate the velocity field distribution during particle flow. The experimental results were analyzed by examining the profiles of particles and interstitial fluid at different characteristic times, studying the particle runout distance and descent distance, calculating the front velocity and descent velocity of particles, and investigating the collapse duration. Furthermore, the open-source software PIVlab was used to analyze the velocity field distribution at each characteristic time to determine the area of the flowing layer, thereby understanding the variations in particle flow behavior under different saturation levels, interstitial fluid viscosities, and gate openings.
The experimental results indicate that different liquid saturation levels, interstitial fluid viscosities, and gate openings significantly impact the flow behavior of two-phase particle collapse. As liquid saturation increases, particle runout distance, descent height, and velocity all show significant improvement, indicating that the presence of liquid reduces cohesion between particles, promoting their flow and dispersion. An increase in gate opening leads to more particles and liquid mixture passing through the gate, resulting in an increase in runout distance, while descent height and velocity initially increase and then decrease, and the collapse duration is shortened accordingly. With increasing interstitial fluid viscosity, runout distance decreases relatively, but the difference is not significant under supersaturated conditions due to the greater influence of liquid potential energy, which weakens the impact of viscosity on runout distance. Descent height and velocity decrease with increasing viscosity in both unsaturated and supersaturated states. In the saturated state, a special situation is observed where the descent velocity of the glycerol-water solution is slower, but its descent height is greater than that of water. This is because high-viscosity fluid affects particle motion, allowing particles to remain in motion for a longer time, thereby increasing the final descent height, while the initial particle motion velocity is relatively lower due to greater fluid resistance. Finally, from the velocity field profiles, significant differences in flow behavior among different experimental groups were observed, including variations in velocity magnitude and velocity vectors. These data analyses allowed for a comparison of the flowing layer areas to quantify the dynamic behavior of particles and interstitial fluids in each experimental group.
關鍵字(中) ★ 顆粒崩塌流
★ 兩相流
★ 局部潰壩
★ 黏滯度
★ 初始飽和度
關鍵字(英) ★ Granular collapse flow
★ Two-phase flow
★ Partially dam break
★ Viscosity
★ Initial liquid saturation
論文目次 摘要 i
Abstract iii
目錄 vii
圖目錄 ix
表目錄 xii
符號說明 xiii
第一章 簡介 1
1.1前言 1
1.2顆粒崩塌流 2
1.3顆粒間隙流體效應 3
1.3.1 乾燥顆粒崩塌(dry granular column collapse) 3
1.3.2 浸沒顆粒崩塌(submerged granular column collapse) 5
1.3.3 過飽和、完全飽和和部分飽和顆粒崩塌(over-saturated, fully saturated and under-saturated granular column collapse) 7
1.4局部潰壩之研究 8
1.5研究動機 9
第二章 實驗方法與原理 11
2.1實驗材料與設備 11
2.1.1二維水平流槽 11
2.1.2顆粒材料 11
2.1.3影像拍攝與補光系統 12
2.2實驗與分析方法 13
2.2.1實驗方法 13
2.2.2分析方法 14
第三章 實驗結果與討論 30
3.1 流動過程變化 30
3.1.1顆粒與間隙流體的表面輪廓 30
3.1.2顆粒跳動距離隨時間變化 34
3.1.3顆粒前沿速度隨時間變化 35
3.1.4顆粒下降高度及速率隨時間變化的比較 36
3.1.5顆粒崩塌持續時間隨閘門開度的比較 38
3.2 顆粒崩塌流場與速度分析 39
3.2.1 顆粒速度分布 39
3.2.2顆粒靜止層和流動層分析 40
第四章 結論 85
參考文獻 [1] M. Rico, G. Benito, A. Salgueiro, A. Díez-Herrero, and H. Pereira, "Reported tailings dam failures: a review of the European incidents in the worldwide context". Journal of Hazardous Materials, Vol. 152(2): pp. 846-852, 2008.
[2] M. Pirone, R. Papa, M. V. Nicotera, and G. Urciuoli, "In situ monitoring of the groundwater field in an unsaturated pyroclastic slope for slope stability evaluation". Landslides, Vol. 12: pp. 259-276, 2015.
[3] L. F. Harder Jr and J. P. Stewart, "Failure of Tapo Canyon tailings dam". Journal of Performance of Constructed Facilities, Vol. 10(3): pp. 109-114, 1996.
[4] F. Wang, Y. Zhang, Z. Huo, X. Peng, S. Wang, and S. Yamasaki, "Mechanism for the rapid motion of the Qianjiangping landslide during reactivation by the first impoundment of the Three Gorges Dam reservoir, China". Landslides, Vol. 5: pp. 379-386, 2008.
[5] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt, "Collapses of two-dimensional granular columns". Physical Review E, Vol. 72(4): 041301, 2005.
[6] H.-T. Chou and C.-F. Lee, "Falling process of a rectangular granular step". Granular Matter, Vol. 13: pp. 39-51, 2011.
[7] Z. Q. Lai, E. H. Jiang, L. J. Zhao, Z. M. Wang, Y. J. Wang, and J. H. Li, "Granular column collapse: Analysis of inter-particle friction effects". Powder Technology, Vol. 415: 118171, 2023.
[8] K. M. Park, M. I. Kim, and H. S. Yoon, "Effects of the size and friction coefficient of particles on a liquid-gas-particle mixture flow in dam break". AIP Advances, Vol. 9(1): 015208, 2019.
[9] E. Lajeunesse, J. B. Monnier, and G. M. Homsy, "Granular slumping on a horizontal surface". Physics of Fluids, Vol. 17(10): 103302, 2005.
[10] R. Artoni, A. C. Santomaso, F. Gabrieli, D. Tono, and S. Cola, "Collapse of quasi-two-dimensional wet granular columns". Physical Review E, Vol. 87(3): 032205, 2013.
[11] M. Schaefer, L. Bugnion, M. Kern, and P. Bartelt, "Position dependent velocity profiles in granular avalanches". Granular Matter, Vol. 12(3): pp. 327-336, 2010.
[12] L. Sheng, Y. Tai, C. Kuo, and S. Hsiau, "A two-phase model for dry density-varying granular flows". Advanced Powder Technology, Vol. 24(1): pp. 132-142, 2013.
[13] Z. Lai, L. E. Vallejo, W. Zhou, G. Ma, J. M. Espitia, B. Caicedo, and X. Chang, "Collapse of granular columns with fractal particle size distribution: Implications for understanding the role of small particles in granular flows". Geophysical Research Letters, Vol. 44(24): pp. 12,181-12,189, 2017.
[14] F. Yu and L. Su, "Experimental investigation of mobility and deposition characteristics of dry granular flow". Landslides, Vol. 18(5): pp. 1875-1887, 2021.
[15] Z. Lai, D. Chen, E. Jiang, L. Zhao, L. E. Vallejo, and W. Zhou, "Effect of fractal particle size distribution on the mobility of dry granular flows". AIP Advances, Vol. 11(9), 2021.
[16] O. Rufai, Y.-C. Jin, and Y. Tai, "A two-particle approach for dry high density-ratio granular collapse". Powder Technology, Vol. 414: pp. 118101, 2023.
[17] C. Meruane, A. Tamburrino, and O. Roche, "Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid". Physical Review E, Vol. 86(2): pp. 026311, 2012.
[18] A. Bougouin and L. Lacaze, "Granular collapse in a fluid: Different flow regimes for an initially dense-packing". Physical Review Fluids, Vol. 3(6): 064305, 2018.
[19] C.-H. Lee, Z. Huang, and M.-L. Yu, "Collapse of submerged granular columns in loose packing: Experiment and two-phase flow simulation". Physics of Fluids, Vol. 30(12), 2018.
[20] G. Pinzon and M. Cabrera, "Planar collapse of a submerged granular column". Physics of Fluids, Vol. 31(8): 086603, 2019.
[21] C. H. Lee and J. Y. Chen, "Multiphase simulations and experiments of subaqueous granular collapse on an inclined plane in densely packed conditions: Effects of particle size and initial concentration". Physical Review Fluids, Vol. 7(4): 044301, 2022.
[22] C.-H. Lee, "Two-phase modelling of submarine granular flows with shear-induced volume change and pore-pressure feedback". Journal of Fluid Mechanics, Vol. 907: pp. A31, 2021.
[23] S. C. Du Pont, P. Gondret, B. Perrin, and M. Rabaud, "Granular avalanches in fluids". Physical Review Letters, Vol. 90(4): pp. 044301, 2003.
[24] L. Rondon, O. Pouliquen, and P. Aussillous, "Granular collapse in a fluid: Role of the initial volume fraction". Physics of Fluids, Vol. 23(7): 073301, 2011.
[25] V. Topin, Y. Monerie, F. Perales, and F. Radjai, "Collapse dynamics and runout of dense granular materials in a fluid". Physical Review Letters, Vol. 109(18): pp. 188001, 2012.
[26] C. H. Lee and Y. H. Kuan, "Onset of submerged granular collapse in densely packed condition". Physics of Fluids, Vol. 33(12): 121705, 2021.
[27] Y. T. Zhao, W. A. Take, R. Kaitna, B. W. McArdell, J. N. McElwaine, and E. T. Bowman, "Fluid effects in model granular flows". Granular Matter, Vol. 26(1): 2, 2024.
[28] R. Duarte, J. Ribeiro, J.-L. Boillat, and A. Schleiss, "Experimental study on dam-break waves for silted-up reservoirs". Journal of Hydraulic Engineering, Vol. 137(11): pp. 1385-1393, 2011.
[29] D. Berzi, F. C. Bossi, and E. Larcan, "Collapse of granular-liquid mixtures over rigid, inclined beds". Physical Review E, Vol. 85(5): pp. 051308, 2012.
[30] K. He, H. Shi, and X. Yu, "Effects of interstitial water on collapses of partially immersed granular columns". Physics of Fluids, Vol. 34(2), 2022.
[31] S. M. Tayyebi, M. Pastor, M. M. Stickle, Á. Yagüe, D. Manzanal, M. Molinos, and P. Navas, "SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term". European Journal of Mechanics-B/Fluids, Vol. 96: pp. 1-14, 2022.
[32] S. Manenti, S. Sibilla, M. Gallati, G. Agate, and R. Guandalini, "SPH simulation of sediment flushing induced by a rapid water flow". Journal of Hydraulic Engineering, Vol. 138(3): pp. 272-284, 2012.
[33] M. Fadaee and M. Zounemat-Kermani, "Experimental study and numerical simulation of dam reservoir sediment release". Water SA, Vol. 46(4): pp. 656-664, 2020.
[34] T. Lazzarin, D. P. Viero, A. Defina, and L. Cozzolino, "Flow under vertical sluice gates: Flow stability at large gate opening and disambiguation of partial dam-break multiple solutions". Physics of Fluids, Vol. 35(2), 2023.
[35] T. Zhang, F. Liu, M. Zhao, Q. Ma, W. Wang, Q. Fan, and P. Yan, "Determination of corn stalk contact parameters and calibration of Discrete Element Method simulation". Journal of China Agricultural University, Vol. 23(4): pp. 120-127, 2018.
[36] G. Lauber and W. H. Hager, "Experiments to dambreak wave: Horizontal channel". Journal of Hydraulic Research, Vol. 36(3): pp. 291-307, 1998.
[37] J. B. Segur and H. E. Oberstar, "Viscosity of glycerol and its aqueous solutions". Industrial & Engineering Chemistry, Vol. 43(9): pp. 2117-2120, 1951.
[38] E. Stamhuis and W. Thielicke, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB". Journal of Open Research Software, Vol. 2(1): pp. 30, 2014.
[39] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, "The connected-component labeling problem: A review of state-of-the-art algorithms". Pattern Recognition, Vol. 70: pp. 25-43, 2017.
[40] J. M. Chambers and N. M. Wereley. "Photogrammetric measurement and analysis of the shape profile of pneumatic artificial muscles". in Actuators. 2021. MDPI.
[41] C. Meruane, A. Tamburrino, and O. Roche, "On the role of the ambient fluid on gravitational granular flow dynamics". Journal of Fluid Mechanics, Vol. 648: pp. 381-404, 2010.
[42] A. Bougouin and L. Lacaze, "Granular collapse in a fluid: Different flow regimes for an initially dense-packing". Physical Review Fluids, Vol. 3(6): pp. 064305, 2018.
[43] G. Lube, H. E. Huppert, R. S. J. Sparks, and A. Freundt, "Collapses of two-dimensional granular columns". Physical Review E, Vol. 72(4): pp. 041301, 2005.
[44] C.-H. Lee and Y.-H. Kuan, "Onset of submerged granular collapse in densely packed condition". Physics of Fluids, Vol. 33(12), 2021.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明