參考文獻 |
[1] Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348.
[2] Cheah, C. M., Chua, C. K., Lee, C. W., Feng, C., & Totong, K. (2005). Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. The International Journal of Advanced Manufacturing Technology, 25, 308-320.
[3] Chen, T. Y., Wang, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., Chan, C. W., & Fuh, Y. K. (2024). Formation mechanism and improved remedy of thermal property of cold shut surface defects in Vortex Flow Meters: Numerical simulation and experimental verification in investment casting of 316 L stainless steel. Journal of Manufacturing Processes, 120, 542-554.
[4] Huang, P. H., Shih, L. K. L., Lin, H. M., Chu, C. I., & Chou, C. S. (2019). Novel approach to investment casting of heat-resistant steel turbine blades for aircraft engines. The International Journal of Advanced Manufacturing Technology, 104, 2911-2923.
[5] Jafari, H., Idris, M. H., & Ourdjini, A. (2013). A review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression. Materials and manufacturing processes, 28(8), 843-856.
[6] Kanyo, J. E., Schafföner, S., Uwanyuze, R. S., & Leary, K. S. (2020). An overview of ceramic molds for investment casting of nickel superalloys. Journal of the European Ceramic Society, 40(15), 4955-4973.
[7] Lü, K., Duan, Z., Liu, X., & Li, Y. (2019). Effects of fibre length and mixing routes on fibre reinforced shell for investment casting. Ceramics International, 45(6), 6925-6930.
[8] Yuan, C., Compton, D., Cheng, X., Green, N., & Withey, P. (2012). The influence of polymer content and sintering temperature on yttria face-coat moulds for TiAl casting. Journal of the European Ceramic Society, 32(16), 4041-4049.
[9] Wang, F., Li, F., He, B., & Sun, B. (2014). Microstructure and strength of needle coke modified ceramic casting molds. Ceramics International, 40(1), 479-486.
[10] Xu, W., Zhao, Y., Sun, S., Liu, M., Ma, D., Liang, X., ... & Tao, R. (2018). Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy. Materials Research Express, 5(4), 046504.
[11] Bai, Y., Xing, J., Ma, S., Huang, Q., He, Y., Liu, Z., & Gao, Y. (2013). Effect of 4 wt.% Cr on microstructure, corrosion resistance and tribological properties of Fe3Al–20 wt.% Al2O3 composites. Materials characterization, 78, 69-78.
[12] Aruna, S. T., Balaji, N., Shedthi, J., & Grips, V. W. (2012). Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings. Surface and Coatings Technology, 208, 92-100.
[13] Oladijo, O. P., Popoola, A. P. I., Booi, M., Fayomi, J., & Collieus, L. L. (2020). Corrosion and mechanical behaviour Of Al2o3. Tio2 composites produced by spark plasma sintering. South African Journal of Chemical Engineering, 33, 58-66.
[14] Nakano, H., Watari, K., Kinemuchi, Y., Ishizaki, K., & Urabe, K. (2004). Microstructural characterization of high-thermal-conductivity SiC ceramics. Journal of the European Ceramic Society, 24(14), 3685-3690.
[15] Yun, S. I., Nahm, S., & Park, S. W. (2022). Effects of SiC particle size on flexural strength, permeability, electrical resistivity, and thermal conductivity of macroporous SiC. Ceramics International, 48(1), 1429-1438.
[16] Kim, Y. H., Kim, Y. W., & Seo, W. S. (2020). Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity. Journal of the European Ceramic Society, 40(7), 2623-2633.
[17] Małek, M., Wiśniewski, P., Matysiak, H., Zagórska, M., & Kurzydłowski, K. J. (2014). Technological properties of SiC-based ceramic slurries for manufacturing investment casting shell moulds. Archives of Metallurgy and Materials, 59(3), 1059-1062.
[18] Tseng, H. W., Chen, T. Y., Kao, Y. C., Huang, C. F., Liu, Y. C., Lee, S. C., ... & Fuh, Y. K. (2023). Effect of shell mold thickness and insulating wool pattern on internal porosity in investment casting of vortex flow meter. The International Journal of Advanced Manufacturing Technology, 127(5), 2371-2385.
[19] Srinivasa, R., & Patil, R. (2017). Characterization of Casting and Deformation Process of a Metal Alloy. International Research Journal of Engineering and Technology, 4(2).
[20] Zou, Y., & Malzbender, J. (2016). Development and optimization of porosity measurement techniques. Ceramics international, 42(2), 2861-2870.
[21] Pichler, P., Simonds, B. J., Sowards, J. W., & Pottlacher, G. (2020). Measurements of thermophysical properties of solid and liquid NIST SRM 316L stainless steel. Journal of Materials Science, 55(9), 4081-4093.
[22] Miyata, Y., Okugawa, M., Koizumi, Y., & Nakano, T. (2021). Inverse columnar-equiaxed transition (CET) in 304 and 316L stainless steels melt by electron beam for additive manufacturing (AM). Crystals, 11(8), 856.
[23] Konrad, C. H., Brunner, M., Kyrgyzbaev, K., Völkl, R., & Glatzel, U. (2011). Determination of heat transfer coefficient and ceramic mold material parameters for alloy IN738LC investment castings. Journal of Materials Processing Technology, 211(2), 181-186. |