參考文獻 |
1.IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024, Licence: CC BY 4.0.
2.IEA (2023), Energy Statistics Data Browser, IEA, Paris https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser.
3.Zhu, Z., et al., Rechargeable batteries for grid scale energy storage. Chemical Reviews, 2022. 122(22): p. 16610-16751.
4.IEA (2024), Renewables 2023, IEA, Paris https://www.iea.org/reports/renewables-2023, Licence: CC BY 4.0.
5.An, Y., et al., Materials design for high-energy-density anode-free batteries. Matter, 2024. 7(4): p. 1466-1502.
6.Guney, M.S. and Y. Tepe, Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 2017. 75: p. 1187-1197.
7.Dehghani-Sanij, A., et al., Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 2019. 104: p. 192-208.
8.Tian, M., et al., Designer Lithium Reservoirs for Ultralong Life Lithium Batteries for Grid Storage. Advanced Materials, 2024: p. 2400707.
9.Xu, J., et al., High‐energy lithium‐ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023. 6(5): p. e12450.
10.Liu, J., et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019. 4(3): p. 180-186.
11.Shen, X., et al., Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018. 12: p. 161-175.
12.Wang, Q., et al., Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science, 2021. 8(17): p. 2101111.
13.Kim, S., et al., Lithium‐metal batteries: from fundamental research to industrialization. Advanced Materials, 2023. 35(43): p. 2206625.
14.Wu, B., et al., Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Materials, 2023. 57: p. 508-539.
15.Huang, Y.K., H. Chen, and L. Nyholm, Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries. Small, 2023. 19(43): p. 2306829.
16.Pei, A., et al., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters, 2017. 17(2): p. 1132-1139.
17.Park, C.Y., et al. Toward maximum energy density enabled by anode‐free lithium metal batteries: Recent progress and perspective. in Exploration. 2024. Wiley Online Library.
18.Cheng, Y., et al., Lithium Host: Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021. 38: p. 276-298.
19.He, X., et al., 3D-hosted lithium metal anodes. Chemical Society Reviews, 2024.
20.Liu, S., et al., High interfacial-energy interphase promoting safe lithium metal batteries. Journal of the American Chemical Society, 2020. 142(5): p. 2438-2447.
21.Ding, X., et al., Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes. ACS Sustainable Chemistry & Engineering, 2023. 11(18): p. 6879-6889.
22.Chi, S.S., et al., Prestoring lithium into stable 3D nickel foam host as dendrite‐free lithium metal anode. Advanced Functional Materials, 2017. 27(24): p. 1700348.
23.Liu, H., et al., A novel design of 3D carbon host for stable lithium metal anode. Carbon Energy, 2022. 4(4): p. 654-664.
24.Pan, L., et al., Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS applied materials & interfaces, 2019. 11(47): p. 44383-44389.
25.Du, Z., et al., Advances in graphene-based hosts for lithium metal anodes. Energy Storage Materials, 2024: p. 103191.
26.Wang, J., et al., Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420: p. 129739.
27.Yu, Z., Y. Cui, and Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Reports Physical Science, 2020. 1(7).
28.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
29.Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
30.Min, K. and N.R. Aluru, Mechanical properties of graphene under shear deformation. Applied Physics Letters, 2011. 98(1).
31.Mohan, V.B., et al., Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B, 2015. 193: p. 49-60.
32.Gospodarev, I., et al., Phonon heat capacity of graphene nanofilms and nanotubes. Low Temperature Physics, 2017. 43(2): p. 264-273.
33.Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
34.Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010. 22(35): p. 3906-3924.
35.Assegie, A.A., et al., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019. 11(6): p. 2710-2720.
36.Wondimkun, Z.T., et al., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources, 2020. 450: p. 227589.
37.Hou, Z., et al., Preparation of ultrathin graphene film via capillary liquid bridge for uniform lithium nucleation in anode free lithium metal battery. Energy Storage Materials, 2022. 53: p. 254-263.
38.Yao, Y., et al., Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of materials chemistry A, 2019. 7(19): p. 12214-12224.
39.Wang, B., J. Wang, and J. Zhu, Fluorination of graphene: a spectroscopic and microscopic study. ACS nano, 2014. 8(2): p. 1862-1870.
40.Liu, Y., et al., Fluorinated graphene: A promising macroscale solid lubricant under various environments. ACS applied materials & interfaces, 2019. 11(43): p. 40470-40480.
41.Huang, W., et al., Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chemical Physics Letters, 2012. 552: p. 97-101.
42.Elias, D.C., et al., Control of graphene′s properties by reversible hydrogenation: evidence for graphane. Science, 2009. 323(5914): p. 610-613.
43.Cheng, H., et al., Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium–Oxygen Cells. ACS applied materials & interfaces, 2019. 11(43): p. 39737-39745.
44.Amatucci, G.G. and N. Pereira, Fluoride based electrode materials for advanced energy storage devices. Journal of Fluorine Chemistry, 2007. 128(4): p. 243-262.
45.Yuan, Y., et al., Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019. 37: p. 197-203.
46.Li, Z., et al., A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018. 49: p. 179-185.
47.Wang, J., et al., In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2021. 411: p. 128534.
48.Shang, Y., et al., Scalable synthesis of LiF‐rich 3D architected Li metal anode via direct lithium‐fluoropolymer pyrolysis to enable fast Li cycling. Energy & Environmental Materials, 2021. 4(2): p. 213-221.
49.Sun, S., et al., Facile ex situ formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. Journal of materials chemistry A, 2020. 8(33): p. 17229-17237.
50.Luo, Z., et al., Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density. ACS Applied Materials & Interfaces, 2021. 13(16): p. 18809-18820.
51.Cui, C., et al., A highly reversible, dendrite‐free lithium metal anode enabled by a lithium‐fluoride‐enriched interphase. Advanced Materials, 2020. 32(12): p. 1906427.
52.Jamaluddin, A., et al., Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries. Carbon, 2022. 197: p. 141-151.
53.Wu, Y.-T., 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討. 2022, National Central University.
54.TSENG, K.-H., 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究. 2021, National Central University.
55.Diba, M., et al., Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science, 2016. 82: p. 83-117.
56.Liu, W.W., J.N. Wang, and X.X. Wang, Charging of unfunctionalized graphene in organic solvents. Nanoscale, 2012. 4(2): p. 425-428.
57.Sin, Y.-Y., et al., Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020. 169: p. 248-257.
58.Su, C.-Y., et al., High-quality thin graphene films from fast electrochemical exfoliation. ACS nano, 2011. 5(3): p. 2332-2339.
59.Feng, W., et al., Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Advanced Science, 2016. 3(7): p. 1500413.
60.Liu, Y., et al., A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of materials chemistry A, 2019. 7(21): p. 13225-13233.
61.Fan, L., et al., Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A, 2017. 5(7): p. 3483-3492.
62.Xu, K., et al., Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. The Journal of Physical Chemistry C, 2007. 111(20): p. 7411-7421.
63.Lee, Y.-K., et al., Understanding an exceptionally fast and stable Li-ion charging of highly fluorinated graphene with fine-controlled C–F configuration. ACS Applied Materials & Interfaces, 2021. 13(45): p. 53767-53776.
64.Kwon, H., et al., An electron-deficient carbon current collector for anode-free Li-metal batteries. Nature communications, 2021. 12(1): p. 5537.
65.Ding, S., et al., Organic nano carbon source inducing 3D silica nanoparticles-graphene nanosheet layer on Cu current collector for high-performance anode-free lithium metal batteries. Journal of Colloid and Interface Science, 2024.
66.Nikodimos, Y., et al., Multifunctional electrospun PVDF-HFP gel polymer electrolyte membrane suppresses dendrite growth in anode-free li metal battery. Energy Storage Materials, 2023. 61: p. 102861.
67.Wang, X., et al., Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials, 2022. 49: p. 135-143.
68.Zhao, B., et al., In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment. Journal of Energy Chemistry, 2022. 66: p. 295-305.
69.Kang, W. and S. Li, Preparation of fluorinated graphene to study its gas sensitivity. RSC advances, 2018. 8(41): p. 23459-23467.
70.Bhattacharya, S., A.R. Riahi, and A.T. Alpas, Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes–SEI formation and graphite damage mechanisms. Carbon, 2014. 77: p. 99-112.
71.Zheng, J., et al., Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021. 9(16): p. 10251-10259.
72.Ahmad, A., et al., Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. Applied Nanoscience, 2020. 10: p. 1243-1255.
73.Gupta, B., et al., Role of oxygen functional groups in reduced graphene oxide for lubrication. Scientific reports, 2017. 7(1): p. 45030.
74.Qu, D., et al., Preparation of graphene nanosheets/copper composite by spark plasma sintering. Advanced Materials Research, 2014. 833: p. 276-279. |