博碩士論文 111328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.191.103.29
姓名 莊紫綺(Tzu-Chi Chuang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氟化石墨烯複合層作為無陽極鋰金屬電池的人工固體電解質界面之研究
(The Study of Fluorinated Graphene Composite Layers as Artificial Solid Electrolyte Interfaces for Anode-Free Lithium Metal Batteries)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-15以後開放)
摘要(中) 因應全球暖化問題以及科技的不斷進步,我們需要尋找可持續和更加環保的能源儲存解決方案。因此,無陽極鋰金屬電池(anode-free lithium metal batteries, AFLB)因為具有高能量密度而引起了廣泛的研究。然而,AFLB的研究存在一些問題,其中一個主要的問題是在鋰沉積過程中可能形成的枝晶鋰,造成AFLB的陽極循環穩定性不佳,甚至導致電池短路。為了克服這些挑戰,近期的研究發展一種人工固態電解質界面膜(artificial solid electrolyte interphase, ASEI)來改善此瓶頸。其中,ASEI是一種功能性薄膜,過去常用有機或無機的材料來達成,其用於保護鋰金屬陽極並優化其性能。但對於提高鋰沉積的效率與材料穩定性,以及增加電池的循環壽命仍不理想。
本研究中,通過使用電泳沉積法(electrophoretic deposition, EPD)沉積氟化電化學剝離石墨烯(FECG)及電化學剝離石墨烯(ECG)來製備新型態複合多層膜結構的ASEI並研究其電化學基礎特性。複合多層膜上層為FECG塗層,具有高的親鋰性並能達到均勻填鋰,以及下層漸變為ECG層,其具有導電特性能傳輸電子,底層則為薄層之FECG,其可與銅基材有高的接著穩定性,這種複合多層膜在機制上,藉由親鋰層向下擴散,並由所設計的漸變層,讓鋰沿片層間通道向下的過程,可由導電子ECG轉移下方電子,而還原鋰離子,藉此高效地促進鋰於ECG/FECG界面均勻沉積,並維持鋰沉積/脫鋰的庫倫效率跟結構穩定性。我們發現此複合多層ASEI膜,其半電池具有低的成核過電位(46.1 mV)和較低的過電壓(81.8 mV),且隨著循環次數的增加,過電壓降低,因此可提升填鋰效率。在第325次循環後庫倫效率(Coulombic efficiency, CE)仍維持97.2 %,具有高的穩定性,並且極化曲線特性可穩定循環達600 hr。而在全電池(NMC-622//ML)測試中,第150次循環後比容量仍超過120 mAh/g,於第160次循環時電容維持率為72 %。此外,藉由材料分析,包含鋰沉積/脫鋰的微結構形貌、化學鍵結組成,探討複合ASEI膜中鋰沉積的行為機制,這一關鍵技術的應用有望解決AFLB面臨的挑戰,使其成為更安全且高能量密度的儲能電池。
摘要(英) In response to global warming and the continuous advancement of technology, there is a growing demand for sustainable and environmentally friendly energy storage solutions. Consequently, the research focus has turned towards anode-free lithium metal batteries (AFLB) due to their high energy density. However, AFLB research faces challenges, notably the formation of dendritic lithium during lithium deposition, which undermines the stability of the anode and can lead to battery short-circuiting. Recent studies have thus aimed to address this issue by developing an artificial solid electrolyte interphase (ASEI) as a solution. ASEI, typically a functional thin film composed of organic or inorganic materials, is designed to protect the lithium metal anode and enhance its performance. Yet, improving lithium deposition efficiency, material stability, and increasing battery cycle life remains an ongoing challenge.
This study explores a novel approach by employing electrophoretic deposition (EPD) to fabricate a new type of composite multilayer ASEI structure using fluorinated electrochemically exfoliated graphene (FECG) and electrochemically exfoliated graphene (ECG). The upper layer consists of FECG, which exhibits high lithium ion conductivity enabling uniform lithium plating. Transitioning below is the ECG layer, known for its electron conductivity, facilitating efficient electron transfer, with a thin FECG layer at the base ensuring robust adhesion to the copper substrate. Mechanistically, this composite multilayer ASEI facilitates uniform lithium deposition by guiding lithium ions through its conductive layers and gradual transitions, thereby promoting efficient lithium plating and stripping processes at the ECG/FECG interface, maintaining high Coulombic efficiency and structural stability.
The fabricated composite multilayer ASEI membrane demonstrated promising electrochemical characteristics, including low nucleation overpotential (46.1 mV) and reduced polarization (81.8 mV), which diminish with cycling, indicating enhanced lithium plating efficiency. After 325 cycles, the Coulombic efficiency remained high at 97.2 %, underscoring its stability. Polarization curves remained stable for up to 600 hours. In full-cell (NMC-622//ML) testing, the specific capacity exceeded 120 mAh/g after 150 cycles, with capacity retention at 72 % after 160 cycles. Additionally, material analysis of lithium deposition behaviors within the composite ASEI membrane, including microstructural morphology and chemical bonding composition during lithium plating and stripping, elucidated the mechanism behind its performance.
These findings suggest that the application of this composite multilayer ASEI membrane holds promise in addressing the challenges faced by AFLB, potentially advancing safer and higher energy density energy storage batteries.
關鍵字(中) ★ 無陽極鋰金屬電池
★ 人工固體電解質界面
★ 氟化石墨烯
關鍵字(英) ★ Anode-Free Lithium Metal Batteries
★ Artificial Solid Electrolyte Interfaces
★ Fluorinated Graphene
論文目次 學位論文授權書 I
學位論文延後公開申請書 II
指導教授推薦信 III
口試委員審定書 IV
摘要 V
Abstract VI
誌謝 VIII
總目錄 IX
圖目錄 XII
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 儲能系統的發展與電池的優勢 2
第二章 研究背景與文獻回顧 4
2-1 鋰電池簡介與發展近況 4
2-1-1 鋰離子電池 4
2-1-2 鋰金屬電池 4
2-1-3 無陽極鋰金屬電池 5
2-2 實現安全且無枝晶的AFLB 7
2-2-1 鋰載體(Lithium host) 7
2-2-2 人工固態電解質界面膜 8
2-2-3 石墨烯材料用於穩定AFLB陽極鋰沉積之研究 9
2-2-4 氟化石墨烯材料用於穩定AFLB陽極鋰沉積之研究 11
2-3 電泳沉積法製備石墨烯相關材料塗層 15
2-3-2 電泳沉積法高接著性塗佈氟化石墨烯於陽極 15
2-3-3 電泳沉積法塗佈石墨烯與氟化石墨烯製備陽極 16
2-4 研究動機 18
第三章 實驗方法與步驟 20
3-1 實驗藥品 20
3-2 電化學剝離石墨烯之製備 21
3-3 氟化石墨烯之製備 21
3-4 ECG和FECG的表面形貌及化學特性分析與試片製備 22
3-5 氟化石墨烯複合多層人工固體電解質界面之製備 23
3-6 鋰金屬電池組裝 25
3-6-2 鋰金屬半電池組裝 25
3-6-3 鋰金屬全電池組裝 25
3-7 電化學量測 26
3-8 氟化石墨烯複合多層ASEI形貌、結構及縱深分析與樣品製備 26
第四章 結果與討論 28
4-1 ECG和FECG的表面形貌及化學特性分析 28
4-1-1 ECG和FECG表面形貌分析 28
4-1-2 ECG和FECG結晶性分析 29
4-1-3 ECG和FECG化學鍵結態與元素分析 30
4-2 SL、BL和ML之結構分析 31
4-2-1 循環前SL、BL和ML厚度及結構分析 31
4-2-2 循環至電池失效後SL、BL和ML結構之穩定性分析 33
4-3 Li//Cu、Li//SL、Li//BL和 Li//ML半電池之庫侖效率 34
4-4 Li//SL和 Li//ML電池循環穩定性分析 35
4-4-1 Li//SL與 Li//ML之極化曲線 35
4-4-2 Li//SL與Li//ML之成核過電位 36
4-4-3 不同循環次數下Li//SL與Li//ML之穩定性 37
4-4-4 不同電流密度下Li//SL與Li//ML之穩定性 38
4-4-5 Li//SL與Li//ML之交流阻抗分析(EIS) 39
4-4-6 循環時、循環至電池失效後SL和ML之表面形貌分析 40
4-5 鋰沉積之機制探討 41
4-6 全電池之循環穩定性 44
4-7 循環前ML、循環第50次鋰沉積Li//ML之XPS縱深分析 49
4-8 SL與ML作為ASEI之機制模型討論 54
4-9 ECG與FECG之XRD分析 56
第五章 結論 57
第六章 未來工作 58
參考文獻 59
參考文獻 1.IEA (2024), Electricity 2024, IEA, Paris https://www.iea.org/reports/electricity-2024, Licence: CC BY 4.0.
2.IEA (2023), Energy Statistics Data Browser, IEA, Paris https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser.
3.Zhu, Z., et al., Rechargeable batteries for grid scale energy storage. Chemical Reviews, 2022. 122(22): p. 16610-16751.
4.IEA (2024), Renewables 2023, IEA, Paris https://www.iea.org/reports/renewables-2023, Licence: CC BY 4.0.
5.An, Y., et al., Materials design for high-energy-density anode-free batteries. Matter, 2024. 7(4): p. 1466-1502.
6.Guney, M.S. and Y. Tepe, Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews, 2017. 75: p. 1187-1197.
7.Dehghani-Sanij, A., et al., Study of energy storage systems and environmental challenges of batteries. Renewable and Sustainable Energy Reviews, 2019. 104: p. 192-208.
8.Tian, M., et al., Designer Lithium Reservoirs for Ultralong Life Lithium Batteries for Grid Storage. Advanced Materials, 2024: p. 2400707.
9.Xu, J., et al., High‐energy lithium‐ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023. 6(5): p. e12450.
10.Liu, J., et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019. 4(3): p. 180-186.
11.Shen, X., et al., Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018. 12: p. 161-175.
12.Wang, Q., et al., Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science, 2021. 8(17): p. 2101111.
13.Kim, S., et al., Lithium‐metal batteries: from fundamental research to industrialization. Advanced Materials, 2023. 35(43): p. 2206625.
14.Wu, B., et al., Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Materials, 2023. 57: p. 508-539.
15.Huang, Y.K., H. Chen, and L. Nyholm, Influence of Lithium Diffusion into Copper Current Collectors on Lithium Electrodeposition in Anode‐Free Lithium‐Metal Batteries. Small, 2023. 19(43): p. 2306829.
16.Pei, A., et al., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters, 2017. 17(2): p. 1132-1139.
17.Park, C.Y., et al. Toward maximum energy density enabled by anode‐free lithium metal batteries: Recent progress and perspective. in Exploration. 2024. Wiley Online Library.
18.Cheng, Y., et al., Lithium Host: Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021. 38: p. 276-298.
19.He, X., et al., 3D-hosted lithium metal anodes. Chemical Society Reviews, 2024.
20.Liu, S., et al., High interfacial-energy interphase promoting safe lithium metal batteries. Journal of the American Chemical Society, 2020. 142(5): p. 2438-2447.
21.Ding, X., et al., Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes. ACS Sustainable Chemistry & Engineering, 2023. 11(18): p. 6879-6889.
22.Chi, S.S., et al., Prestoring lithium into stable 3D nickel foam host as dendrite‐free lithium metal anode. Advanced Functional Materials, 2017. 27(24): p. 1700348.
23.Liu, H., et al., A novel design of 3D carbon host for stable lithium metal anode. Carbon Energy, 2022. 4(4): p. 654-664.
24.Pan, L., et al., Seed-free selective deposition of lithium metal into tough graphene framework for stable lithium metal anode. ACS applied materials & interfaces, 2019. 11(47): p. 44383-44389.
25.Du, Z., et al., Advances in graphene-based hosts for lithium metal anodes. Energy Storage Materials, 2024: p. 103191.
26.Wang, J., et al., Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420: p. 129739.
27.Yu, Z., Y. Cui, and Z. Bao, Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Reports Physical Science, 2020. 1(7).
28.Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
29.Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
30.Min, K. and N.R. Aluru, Mechanical properties of graphene under shear deformation. Applied Physics Letters, 2011. 98(1).
31.Mohan, V.B., et al., Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B, 2015. 193: p. 49-60.
32.Gospodarev, I., et al., Phonon heat capacity of graphene nanofilms and nanotubes. Low Temperature Physics, 2017. 43(2): p. 264-273.
33.Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
34.Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010. 22(35): p. 3906-3924.
35.Assegie, A.A., et al., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019. 11(6): p. 2710-2720.
36.Wondimkun, Z.T., et al., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources, 2020. 450: p. 227589.
37.Hou, Z., et al., Preparation of ultrathin graphene film via capillary liquid bridge for uniform lithium nucleation in anode free lithium metal battery. Energy Storage Materials, 2022. 53: p. 254-263.
38.Yao, Y., et al., Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of materials chemistry A, 2019. 7(19): p. 12214-12224.
39.Wang, B., J. Wang, and J. Zhu, Fluorination of graphene: a spectroscopic and microscopic study. ACS nano, 2014. 8(2): p. 1862-1870.
40.Liu, Y., et al., Fluorinated graphene: A promising macroscale solid lubricant under various environments. ACS applied materials & interfaces, 2019. 11(43): p. 40470-40480.
41.Huang, W., et al., Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chemical Physics Letters, 2012. 552: p. 97-101.
42.Elias, D.C., et al., Control of graphene′s properties by reversible hydrogenation: evidence for graphane. Science, 2009. 323(5914): p. 610-613.
43.Cheng, H., et al., Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium–Oxygen Cells. ACS applied materials & interfaces, 2019. 11(43): p. 39737-39745.
44.Amatucci, G.G. and N. Pereira, Fluoride based electrode materials for advanced energy storage devices. Journal of Fluorine Chemistry, 2007. 128(4): p. 243-262.
45.Yuan, Y., et al., Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019. 37: p. 197-203.
46.Li, Z., et al., A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018. 49: p. 179-185.
47.Wang, J., et al., In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2021. 411: p. 128534.
48.Shang, Y., et al., Scalable synthesis of LiF‐rich 3D architected Li metal anode via direct lithium‐fluoropolymer pyrolysis to enable fast Li cycling. Energy & Environmental Materials, 2021. 4(2): p. 213-221.
49.Sun, S., et al., Facile ex situ formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. Journal of materials chemistry A, 2020. 8(33): p. 17229-17237.
50.Luo, Z., et al., Ultrafast Li/fluorinated graphene primary batteries with high energy density and power density. ACS Applied Materials & Interfaces, 2021. 13(16): p. 18809-18820.
51.Cui, C., et al., A highly reversible, dendrite‐free lithium metal anode enabled by a lithium‐fluoride‐enriched interphase. Advanced Materials, 2020. 32(12): p. 1906427.
52.Jamaluddin, A., et al., Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries. Carbon, 2022. 197: p. 141-151.
53.Wu, Y.-T., 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討. 2022, National Central University.
54.TSENG, K.-H., 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究. 2021, National Central University.
55.Diba, M., et al., Electrophoretic deposition of graphene-related materials: A review of the fundamentals. Progress in Materials Science, 2016. 82: p. 83-117.
56.Liu, W.W., J.N. Wang, and X.X. Wang, Charging of unfunctionalized graphene in organic solvents. Nanoscale, 2012. 4(2): p. 425-428.
57.Sin, Y.-Y., et al., Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020. 169: p. 248-257.
58.Su, C.-Y., et al., High-quality thin graphene films from fast electrochemical exfoliation. ACS nano, 2011. 5(3): p. 2332-2339.
59.Feng, W., et al., Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Advanced Science, 2016. 3(7): p. 1500413.
60.Liu, Y., et al., A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. Journal of materials chemistry A, 2019. 7(21): p. 13225-13233.
61.Fan, L., et al., Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A, 2017. 5(7): p. 3483-3492.
62.Xu, K., et al., Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. The Journal of Physical Chemistry C, 2007. 111(20): p. 7411-7421.
63.Lee, Y.-K., et al., Understanding an exceptionally fast and stable Li-ion charging of highly fluorinated graphene with fine-controlled C–F configuration. ACS Applied Materials & Interfaces, 2021. 13(45): p. 53767-53776.
64.Kwon, H., et al., An electron-deficient carbon current collector for anode-free Li-metal batteries. Nature communications, 2021. 12(1): p. 5537.
65.Ding, S., et al., Organic nano carbon source inducing 3D silica nanoparticles-graphene nanosheet layer on Cu current collector for high-performance anode-free lithium metal batteries. Journal of Colloid and Interface Science, 2024.
66.Nikodimos, Y., et al., Multifunctional electrospun PVDF-HFP gel polymer electrolyte membrane suppresses dendrite growth in anode-free li metal battery. Energy Storage Materials, 2023. 61: p. 102861.
67.Wang, X., et al., Li plating on alloy with superior electro-mechanical stability for high energy density anode-free batteries. Energy Storage Materials, 2022. 49: p. 135-143.
68.Zhao, B., et al., In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment. Journal of Energy Chemistry, 2022. 66: p. 295-305.
69.Kang, W. and S. Li, Preparation of fluorinated graphene to study its gas sensitivity. RSC advances, 2018. 8(41): p. 23459-23467.
70.Bhattacharya, S., A.R. Riahi, and A.T. Alpas, Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes–SEI formation and graphite damage mechanisms. Carbon, 2014. 77: p. 99-112.
71.Zheng, J., et al., Lithium ion diffusion mechanism on the inorganic components of the solid–electrolyte interphase. Journal of Materials Chemistry A, 2021. 9(16): p. 10251-10259.
72.Ahmad, A., et al., Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. Applied Nanoscience, 2020. 10: p. 1243-1255.
73.Gupta, B., et al., Role of oxygen functional groups in reduced graphene oxide for lubrication. Scientific reports, 2017. 7(1): p. 45030.
74.Qu, D., et al., Preparation of graphene nanosheets/copper composite by spark plasma sintering. Advanced Materials Research, 2014. 833: p. 276-279.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2024-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明