博碩士論文 106690601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:13.58.207.196
姓名 孟華蒂(Megawati)  查詢紙本館藏   畢業系所 國際研究生博士學位學程
論文名稱 印度尼西亞爪哇島南部具破壞性的中深層和地殼地震
(Damaging Intermediate-Depth and Crustal Earthquakes in Southern Java, Indonesia)
相關論文
★ 印尼弗洛雷斯逆衝斷層沿線地震的震源特徵
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 印度尼西亞爪哇島是全球地震活躍度最高的地區之一,經常發生具破壞性和災害性的地震。而中深層地震(深度約60到300公里)已被證實具有很大的破壞性。然而,儘管已知其可能造成的地震災害,在爪哇島南部,對於中深層地震破壞行為的了解仍然甚少。此外,具第二大破壞性災害的地震就發生在此區域,為2006年5月27日地震矩規模6.4的爪哇地震,僅次於2004年位於蘇門答臘的大型逆衝地震。爪哇地震發生於淺層地殼,被稱為是印度尼西亞最具致命性的地震。在本篇論文中,我們的研究主要針對位於爪哇島地區及其鄰近區域的中深層地震和發生於2006年5月27日地震矩規模6.4的淺層地殼地震。

本研究使用有限斷層逆推,探討於1998年到2017年在爪哇島南部及其鄰近地區,5個地震矩規模大於6.1的中層地震(深度60至300公里),其破裂過程和震源特徵。利用遠震體波和表面波,進行小波域震波逆推。首先,利用GCMT (Global Centroid Moment Tensor)資料庫決定最佳的斷層面方向作為初步反演的震源機制解(走向和傾角),以用於分析滑移分佈和震源時間函數(source time functions, STFs)。我們的研究結果顯示,除了1998年的地震以外,大多數地震都表現出較簡單的破裂過程,具有單一且集中的滑移區,以及簡單的三角形震源時間函數。結果指出,除了發生在2014年的地震以外,地震破裂方向主要為沿著傾角方向向下。我們更使用了方向性證實此破裂行為。有三起的地震事件顯示破裂面傾向於近垂直(傾角向下)方向,而有兩起地震事件則表現出近水平方向(傾角向下和圓形)的傾向。考慮到不易證實破裂面與隱沒板塊有關,我們期望藉由密集部署於爪哇島的地震觀測網,將有助於我們深入了解隱沒帶動力學。

我們也對於2006年5月27日,發生於爪哇島南部地震矩規模6.4的左移走向滑移地震,進行了有限斷層逆推。同樣從GCMT決定最佳斷層面方向,作為初步反演的震源機制解(走向和傾角)。結果顯示,東北-西南走向西傾的斷層破裂面逆推結果較好,因為其與Tsuji et al. (2009) 重新定位的餘震分布和干涉合成孔徑雷達 (InSAR) 圖像的結果更一致。震源時間函數顯示了共21秒複雜的地震破裂過程。滑移量分布顯示了三個主要滑移區及非平滑的破裂過程,即破裂是由初始破裂點(震源)沿斷層傾角向上。為增強對地震危害的準備,本研究中,討論了四個地震動預估式 (ground-motion prediction equations, GMPEs),用來預測地震的地震動,並以PGA表示。視覺上比較顯示,BSSA14 地震動預測模型是最合適的模型,因為此模型比其他三個模型更符合觀察。更進一步分析對地震破裂模式與其所造成的地震災害間的關係,有助於對地震災害的評估,特別是在人口密集的印度尼西亞爪哇島。
摘要(英) Java (Indonesia) is one of the most seismically active regions in the world, often hosting in several destructive and damaging earthquakes. The intermediate-depth earthquakes (~60 to 300 km depth) have been shown to be destructive, however, the rupture behavior of these earthquakes in southern Java remains poorly understood despite their potential seismic hazard. In addition, the second largest destructive disaster after the 2004 Sumatra-like megathrust earthquake also occurred in this region, namely the 27 May 2006 Mw 6.4 Java earthquake. This earthquake was the shallow crustal event which was claimed as the deadliest earthquake in the country. In this thesis, my study mainly focuses on the intermediate-depth earthquakes and the 27 May 2006 Mw 6.4 shallow crustal earthquake in the Java region and its surrounding areas.

Finite-fault inversions were performed to investigate the rupture processes and source characteristics of five intermediate-depth earthquakes (60 to 300 km depth) with moment magnitudes (Mw) ≥ 6.1 from 1998 to 2017 in the southern region of Java and its surrounding areas. A wavelet-based seismic inversion technique was employed using teleseismic body waves and surface waves. Initially, preliminary inversions of the focal mechanisms (strike and dip) were conducted using the Global Centroid Moment Tensor (GCMT) database to determine the optimal fault plane orientation for slip distributions and source time functions (STFs). Our findings reveal that most of the earthquakes exhibited a simple rupture process characterized by a single and compact asperity with a single triangular STF, except for the 1998 earthquake. The results indicate that the ruptures primarily propagated unilaterally along the down-dip direction, except for the 2014 earthquake. Further analysis using directivity confirmed the rupture behavior. The preferred rupture planes for the three events were near-vertical (down-dip), while two events exhibited subhorizontal orientations (down-dip and circular). Considering the challenges in determining the rupture plane associated with the subducting slab, the densely deployed national seismic networks in Java are expected to provide valuable insights into the dynamics of the subduction zone.

Finite-fault inversion was also performed on the 27 May 2006 Mw 6.4 left lateral strike-slip earthquake, a moderate shallow crustal earthquake that occurred in southern Java. Preliminary inversions of the focal mechanism (strike and dip) from the GCMT were also conducted to obtain the optimal fault plane orientation. The results show that the southwest-northeast trending west-dipping fault is our preferred rupture plane as it is more consistent with the relocated aftershock distribution and the InSAR image of Tsuji et al. (2009). The STF shows a complicated moment release history, with a total rupture duration of about 21 s. The slip distribution exhibits complex slip patches with three major asperities and rough propagation, dominantly propagated up-dip from the initial rupture break (hypocenter). To improve seismic risk preparation, four candidate ground-motion prediction equations (GMPEs) were discussed in this study to predict ground motion of the earthquake in terms of peak ground acceleration (PGA). The visual comparison revealed that the BSSA14 ground-motion prediction model shows a better fit than the other three models, indicating the most appropriate ground-motion model among the candidates. The rupture pattern in the relationship to the resulted damage was further analyzed to have a better understanding of further seismic hazard assessment, especially for populated region in Java Island, Indonesia.
關鍵字(中) ★ 有限斷層
★ 破裂過層
★ 震源時間函數
★ 中深層地震
★ 方向性
★ 滑移區
★ 爪哇地震
關鍵字(英) ★ finite-fault
★ rupture process
★ source time functions
★ intermediate-depth earthquakes
★ directivity
★ asperities
★ Java earthquake
論文目次 摘要 i
ABSTRACT iv
ACKNOWLEDGMENTS vi
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xv
CHAPTER I INTRODUCTION 1
1.1. Motivation 1
1.2. Objectives 4
1.3. Structure of the thesis 5
CHAPTER II TECTONIC SETTING AND OVERVIEW OF ANALYZED EARTHQUAKES 8
2.1. Tectonic setting of Java 8
2.2. The five intermediate-depth earthquakes 12
2.3. The shallow crustal earthquake: The 27 May 2006 Mw 6.4 Java earthquake 13
CHAPTER III METHODS 20
3.1. Finite-fault inversion 21
3.2. Estimation of the static stress drop 23
3.3. Directivity analysis 23
CHAPTER IV SOURCE CHARACTERIZATION OF INTERMEDIATE-DEPTH EARTHQUAKES IN SOUTHERN JAVA, INDONESIA 25
4.1. Data selection and preprocessing 25
4.2. Finite-fault inversion setting 26
4.3. Directivity analysis 28
4.4. Results 29
4.4.1. The 15 December 2017 Mw 6.6 Java Earthquake 29
4.4.2. The 28 September 1998 Mw 6.5 Java Earthquake 31
4.4.3. The 14 August 1999 Mw 6.4 Southern Sumatra Earthquake 33
4.4.4. The 25 May 2001 Mw 6.3 Java Earthquake 35
4.4.5. The 25 January 2014 Mw 6.1 Java Earthquake 36
CHAPTER V SOURCE CHARACTERIZATION OF SHALLOW CRUSTAL EARTHQUAKE: THE 27 MAY 2006 Mw 6.4 JAVA EARTHQUAKE 60
5.1. Data selection and preprocessing 60
5.2. Finite-fault inversion setting 61
5.3. Results 62
5.4. Comparison of rupture characteristics with prior published results 64
CHAPTER VI DISCUSSION 72
6.1. The five intermediate-depth earthquakes 72
6.1.1. Rupture behavior 72
6.1.2. Rupture size and stress drop 72
6.1.3. Rupture velocity 74
6.1.4. Uncertainty analysis 75
6.1.5. Ruptured fault plane and mechanism of intermediate-depth earthquakes 76
6.1.6. P- and T-axes 78
6.1.7. Possible seismic gap 79
6.2. The shallow crustal earthquake: The 27 May 2006 Mw 6.4 Java earthquake 79
6.2.1. Ground-motion records, V_s30, and seismic intensity 79
6.2.2. Candidate GMPEs 81
6.2.3. Comparing observed intensities and predicted ground-motion of candidate GMPEs 83
6.2.4. Relationship between PGA. damage, and slip distribution 84
CHAPTER VII SUMMARY AND CONCLUSION 98
7.1. Summary 98
7.2. Conclusion 99
REFERENCES 101
APPENDIXES 122
Appendix A 122
Appendix B 127
Appendix C 133
Appendix D 141
參考文獻 Abidin, H.Z., Andreas, H., Kato, T., Ito, T., Meilano, I., Kimata, F., Natawidjaya, D.H., Harjono, H., 2009. Crustal deformation studies in java (indonesia) using gps. J. Earthquake and Tsunami 03, 77–88. https://doi.org/10.1142/S1793431109000445
Abrahamson, N.A., Silva, W.J., Kamai, R., 2014. Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Spectra 30, 1025–1055. https://doi.org/10.1193/070913EQS198M
Adams, M., Twardzik, C., Ji, C., 2017. Exploring the uncertainty range of coseismic stress drop estimations of large earthquakes using finite fault inversions. Geophysical Journal International 208, 86–100. https://doi.org/10.1093/gji/ggw374
Akkar, S., Sandıkkaya, M.A., Şenyurt, M., Azari Sisi, A., Ay, B.Ö., Traversa, P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., Godey, S., 2014. Reference database for seismic ground-motion in Europe (RESORCE). Bull Earthquake Eng 12, 311–339. https://doi.org/10.1007/s10518-013-9506-8
Amaru, M.L., 2007. Global travel time tomography with 3-D reference models, PhD thesis, Geologica Ultraiectina, Utrecht University, Netherlands.
Anggraini, A., 2013. The 26 May 2006 Yogyakarta earthquake, aftershocks and interactions, PhD thesis, Faculty of Mathematisch-Naturwissenschaftlichen, University of Potsdam, Germany.
Arciniega-Ceballos, A., Baena-Rivera, M., Sánchez-Sesma, F.J., 2018. The 1985 (M8.1) Michoacán Earthquake and Its Effects in Mexico City, in: Kruhl, J.H., Adhikari, R., Dorka, U.E. (Eds.), Living Under the Threat of Earthquakes, Springer Natural Hazards. Springer International Publishing, Cham, pp. 65–75. https://doi.org/10.1007/978-3-319-68044-6_4
Asano, K., Iwata, T., 2009. Source Rupture Process of the 2004 Chuetsu, Mid-Niigata Prefecture, Japan, Earthquake Inferred from Waveform Inversion with Dense Strong-Motion Data. Bulletin of the Seismological Society of America 99, 123–140. https://doi.org/10.1785/0120080257
Astiz, L., Lay, T., Kanamori, H., 1988. Large intermediate-depth earthquakes and the subduction process. Physics of the Earth and Planetary Interiors 53, 80–166. https://doi.org/10.1016/0031-9201(88)90138-0
Badan Standardisasi Nasional, 2012. Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung. SNI 1726 2012, p. 149 (in Bahasa Indonesia).
Bassin, C., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU 81, F897.
Ben-Menahem, A., Singh, S.J., 1981. Representation of Seismic Sources, in: Ben-Menahem, A., Singh, S.J. (Eds.), Seismic Waves and Sources. Springer, New York, NY, pp. 151–256. https://doi.org/10.1007/978-1-4612-5856-8_4
BMKG, 2006. Katalog Gempa bumi Signifikan dan Merusak 1821–2017. Pusat Gempa bumi dan Tsunami Badan Meteorologi Klimatologi dan Geofisika, Jakarta (in Bahasa Indonesia).
Boen, T., 2006. Yogya Earthquake 27 May 2006: Structural Damage Report, Earthquake Eng. Res. Inst., Oakland, Calif, pp. 22.
Bohm, M., Haberland, C., Asch, G., 2013. Imaging fluid-related subduction processes beneath Central Java (Indonesia) using seismic attenuation tomography. Tectonophysics 590, 175–188. https://doi.org/10.1016/j.tecto.2013.01.021
Boore, D.M., Stewart, J.P., Seyhan, E., Atkinson, G.M., 2014. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra 30, 1057–1085. https://doi.org/10.1193/070113EQS184M
Campbell, K.W., Bozorgnia, Y., 2014. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra 30, 1087–1115. https://doi.org/10.1193/062913EQS175M
Cesca, S., Heimann, S., Dahm, T., 2011. Rapid directivity detection by azimuthal amplitude spectra inversion. Journal of Seismology 15, 147–164. https://doi.org/10.1007/s10950-010-9217-4
Chen, P.-F., Bina, C.R., Okal, E.A., 2004. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophysical Journal International 159, 721–733. https://doi.org/10.1111/j.1365-246X.2004.02450.x
Chen, P.-F., Bina, C.R., Okal, E.A., 2001. Variations in slab dip along the subducting Nazca Plate, as related to stress patterns and moment release of intermediate-depth seismicity and to surface volcanism. Geochemistry, Geophysics, Geosystems 2. https://doi.org/10.1029/2001GC000153
Chiou, B.S.-J., Youngs, R.R., 2014. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra 30, 1117–1153. https://doi.org/10.1193/072813EQS219M
Consultative Group on Indonesia, 2006. Preliminary Damage and Loss Assessment, Yogyakarta and Central Java Natural Disaster: A joint report of BAPPENAS, the Provincial and Local Governments of D.I. Yogyakarta, the Provincial and Local Governments of Central Java, and international partners, in the 15th Meeting of the Consultative Group on Indonesia (CGI) Jakarta, June 14, 2006, Jakarta, pp. 140.
Dardji, N., Villemin, T., Rampnoux, J.P., 1994. Paleostresses and strike-slip movement: the Cimandiri Fault Zone, West Java, Indonesia. Journal of Southeast Asian Earth Sciences, Symposium on the Dynamics of Subduction and its Products 9, 3–11. https://doi.org/10.1016/0743-9547(94)90061-2
Dȩbski, W., 2008. Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling. Pure and Applied Geophysics 165, 1263–1287. https://doi.org/10.1007/s00024-008-0357-1
Diambama, A.D., Anggraini, A., Nukman, M., Lühr, B.-G., Suryanto, W., 2019. Velocity structure of the earthquake zone of the M6.3 Yogyakarta earthquake 2006 from a seismic tomography study. Geophysical Journal International 216, 439–452. https://doi.org/10.1093/gji/ggy430
Dowrick, D.J., 1996. The Modified Mercalli earthquake intensity scale: Revisions arising from recent studies of New Zealand earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering 29, 92–106. https://doi.org/10.5459/bnzsee.29.2.92-106
Dziewonski, A.M., Anderson, D.L., 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors 25, 297–356. https://doi.org/10.1016/0031-9201(81)90046-7
Ekström, G., Nettles, M., Dziewoński, A.M., 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
Elnashai, A.S., Kim, S.J., Yun, G.J. and Sidarta, D., 2007. The Yogyakarta Earthquake of May 27, 2006. MAE Center CD Release 07-02.
Engdahl, E.R., Di Giacomo, D., Sakarya, B., Gkarlaouni, C.G., Harris, J., Storchak, D.A., 2020. ISC-EHB 1964–2016, an Improved Data Set for Studies of Earth Structure and Global Seismicity. Earth and Space Science 7, e2019EA000897. https://doi.org/10.1029/2019EA000897
Ferrand, T.P., Hilairet, N., Incel, S., Deldicque, D., Labrousse, L., Gasc, J., Renner, J., Wang, Y., Green II, H.W., Schubnel, A., 2017. Dehydration-driven stress transfer triggers intermediate-depth earthquakes. Nature Communications 8, 15247. https://doi.org/10.1038/ncomms15247
Freedman, D., Diaconis, P., 1981. On the histogram as a density estimator: L2 Theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476. https://doi.org/10.1007/BF01025868
Fujita, K., Kanamori, H., 1981. Double seismic zones and stresses of intermediate depth earthquakes. Geophysical Journal International 66, 131–156. https://doi.org/10.1111/j.1365-246X.1981.tb05950.x
Gilbert, F., Dziewonski, A.M., Bullard, E.C., 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 278, 187–269. https://doi.org/10.1098/rsta.1975.0025
Goldberg, D.E., Koch, P., Melgar, D., Riquelme, S., Yeck, W.L., 2022. Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite‐Fault Modeling. Seismological Research Letters 93, 3308–3323. https://doi.org/10.1785/0220220047
Goldstein, P., Snoke, A., 2005. SAC Availability for the IRIS Community. Incorporated Research Institutions for Seismology Newsletter 7.
Gunawan, E., Widiyantoro, S., Marliyani, G.I., Sunarti, E., Ida, R., Gusman, A.R., 2019. Fault source of the 2 September 2009 Mw 6.8 Tasikmalaya intraslab earthquake, Indonesia: Analysis from GPS data inversion, tsunami height simulation, and stress transfer. Physics of the Earth and Planetary Interiors 291, 54–61. https://doi.org/10.1016/j.pepi.2019.04.004
Gusev, A., Radulian, M., Rizescu, M., Panza, G.F., 2002. Source scaling of intermediate-depth Vrancea earthquakes. Geophysical Journal International 151, 879–889. https://doi.org/10.1046/j.1365-246X.2002.01816.x
Hacker, B.R., Peacock, S.M., Abers, G.A., Holloway, S.D., 2003. Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research: Solid Earth 108. https://doi.org/10.1029/2001JB001129
Hall, R., 2017. Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences 45, 331–358. https://doi.org/10.1146/annurev-earth-063016-020633
Hall, R., Clements, B., Smyth, H.R., Cottam, M.A., 2007. A New Interpretation of Java’s Structure.
Hall, R., Spakman, W., 2015. Mantle structure and tectonic history of SE Asia. Tectonophysics 658, 14–45. https://doi.org/10.1016/j.tecto.2015.07.003
Hamilton, W.B., 1988. Plate tectonics and island arcs. Geological Society of America Bulletin, 100(10), 1503-1527.
Hanks, T.C., Kanamori, H., 1979. A moment magnitude scale. Journal of Geophysical Research: Solid Earth 84, 2348–2350. https://doi.org/10.1029/JB084iB05p02348
Hao, J., Ji, C., Wang, W., Yao, Z., 2013. Rupture history of the 2013 Mw 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves. Geophysical Research Letters 40, 5371–5376. https://doi.org/10.1002/2013GL056876
Hao, J., Ji, C., Yao, Z., 2017. Slip history of the 2016 Mw 7.0 Kumamoto earthquake: Intraplate rupture in complex tectonic environment. Geophysical Research Letters 44, 743–750. https://doi.org/10.1002/2016GL071543
Hayes, G.P., 2011. Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space 63, 529–534. https://doi.org/10.5047/eps.2011.05.012
Hayes, G.P., Moore, G.L., Portner, D.E., Hearne, M., Flamme, H., Furtney, M., Smoczyk, G.M., 2018. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61. https://doi.org/10.1126/science.aat4723
Helmberger, D.V., 1983. Theory and application of synthetic seismograms. Earthquakes: Observation, Theory and Interpretation 174–222.
Hsieh, M., Zhao, L., Ji, C., Ma, K., 2016. Efficient Inversions for Earthquake Slip Distributions in 3D Structures. Seismological Research Letters 87, 1342–1354. https://doi.org/10.1785/0220160050
Huang, Z., Zhao, D., Wang, L., 2015. P wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. Journal of Geophysical Research: Solid Earth 120, 5154–5174. https://doi.org/10.1002/2015JB012098
Hutchings, S.J., Mooney, W.D., 2021. The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems 22, e2021GC009812. https://doi.org/10.1029/2021GC009812
International Recovery Platform and Universitas Gadjah Mada, 2009. Recovery Status Report: The Yogyakarta and Central Java Earthquake 2006. Kobe, Japan.
Irsyam, M., Cummins, P.R., Asrurifak, M., Faizal, L., Natawidjaja, D.H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N.R., Syahbana, A.J., 2020. Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra 36, 112–136. https://doi.org/10.1177/8755293020951206
Irsyam, M., Widiyantoro, S., Natawidjaja, D.H., Meilano, I., Rudyanto, A., Hidayati, S., Triyoso, W., Hanifa, N.R., Djarwadi, D., & Faizal, L. (editor) & Sunarjito National Team for updating of Indonesia Earthquake Hazard Map 2017., 2017. Earthquake Source and Hazard Map of Indonesia 2017. Indonesia National Center for Earthquake Studies, Research and Development Agency of Ministry of Public Work and Housing, Indonesia.
Isacks, B., Molnar, P., 1971. Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes. Reviews of Geophysics 9, 103–174. https://doi.org/10.1029/RG009i001p00103
Ji, C., Helmberger, D.V., Wald, D.J., Ma, K.-F., 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research: Solid Earth 108. https://doi.org/10.1029/2002JB001764
Ji, C., Wald, D.J., Helmberger, D.V., 2002. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America 92, 1192–1207. https://doi.org/10.1785/0120000916
Jung, H., Green II, H.W., Dobrzhinetskaya, L.F., 2004. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428, 545–549. https://doi.org/10.1038/nature02412
Kanamori, H., Anderson, D.L., 1975. Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America 65, 1073–1095. https://doi.org/10.1785/BSSA0650051073
Kawazoe, Y., Koketsu, K., 2010. Source Fault and Rupture Process of the 2006 Yogyakarta Earthquake 2010. American Geophysical Union, Fall Meeting 2010. 2010AGUFM.S43A2030K
Kawazoe, Y., Koketsu, K., Aoki, Y., 2011. Source fault and rupture process of the 2006 Yogyakarta earthquake. Japan Geoscience Union Meeting 2011.
Kelemen, P.B., Hirth, G., 2007. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446, 787–790. https://doi.org/10.1038/nature05717
Kennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
Kirby, S.H., Stein, S., Okal, E.A., Rubie, D.C., 1996. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics 34, 261–306. https://doi.org/10.1029/96RG01050
Kiser, E., Ishii, M., Langmuir, C.H., Shearer, P.M., Hirose, H., 2011. Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. Journal of Geophysical Research: Solid Earth 116. https://doi.org/10.1029/2010JB007831
Kopp, H., Flueh, E.R., Petersen, C.J., Weinrebe, W., Wittwer, A., Scientists, M., 2006. The Java margin revisited: Evidence for subduction erosion off Java. Earth and Planetary Science Letters 242, 130–142. https://doi.org/10.1016/j.epsl.2005.11.036
Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., Wijanarto, A.B., 2017. The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters 458, 69–79. https://doi.org/10.1016/j.epsl.2016.10.039
Kuge, K., Kase, Y., Urata, Y., Campos, J., Perez, A., 2010. Rupture characteristics of the 2005 Tarapaca, northern Chile, intermediate-depth earthquake: Evidence for heterogeneous fluid distribution across the subducting oceanic plate? Journal of Geophysical Research: Solid Earth 115. https://doi.org/10.1029/2009JB007106
Langston, C.A., Helmberger, D.V., 1975. A Procedure for Modelling Shallow Dislocation Sources*. Geophysical Journal International 42, 117–130. https://doi.org/10.1111/j.1365-246X.1975.tb05854.x
Lee, S., Wong, T., Lin, T., Liu, T., 2019. Complex Triggering Supershear Rupture of the 2018 Mw 7.5 Palu, Indonesia, Earthquake Determined from Teleseismic Source Inversion. Seismological Research Letters 90, 2111–2120. https://doi.org/10.1785/0220190111
Lin, X., Chu, R., Zeng, X., 2019. Rupture processes and Coulomb stress changes of the 2017 Mw 6.5 Jiuzhaigou and 2013 Mw 6.6 Lushan earthquakes. Earth Planets Space 71, 81. https://doi.org/10.1186/s40623-019-1061-3
Liu, C., Lay, T., Xie, Z., Xiong, X., 2019. Intraslab Deformation in the 30 November 2018 Anchorage, Alaska, Mw 7.1 Earthquake. Geophysical Research Letters 46, 2449–2457. https://doi.org/10.1029/2019GL082041
Liu, L., Zhang, J.S., 2015. Differential contraction of subducted lithosphere layers generates deep earthquakes. Earth and Planetary Science Letters 421, 98–106. https://doi.org/10.1016/j.epsl.2015.03.053
Liu, W., Yao, H., 2020. Rupture Process of the 26 May 2019 Mw 8.0 Northern Peru Intermediate-Depth Earthquake and Insights Into Its Mechanism. Geophysical Research Letters 47, e2020GL087167. https://doi.org/10.1029/2020GL087167
López-Comino, J.Á., Stich, D., Ferreira, A.M.G., Morales, J., 2015. Extended fault inversion with random slipmaps: a resolution test for the 2012 Mw 7.6 Nicoya, Costa Rica earthquake. Geophysical Journal International 202, 1505–1521. https://doi.org/10.1093/gji/ggv235
Mai, P.M., Beroza, G.C., 2000. Source Scaling Properties from Finite-Fault-Rupture Models. Bulletin of the Seismological Society of America 90, 604–615. https://doi.org/10.1785/0119990126
Malod, J.A., Karta, K., Beslier, M.O., Zen, M.T., 1995. From normal to oblique subduction: Tectonic relationships between Java and Sumatra. Journal of Southeast Asian Earth Sciences 12, 85–93. https://doi.org/10.1016/0743-9547(95)00023-2
Marot, M., Monfret, T., Pardo, M., Ranalli, G., Nolet, G., 2012. An intermediate-depth tensional earthquake (Mw 5.7) and its aftershocks within the Nazca slab, central Chile: A reactivated outer rise fault? Earth and Planetary Science Letters 327–328, 9–16. https://doi.org/10.1016/j.epsl.2012.02.003
Masson, D.G., Parson, L.M., Milsom, J., Nichols, G., Sikumbang, N., Dwiyanto, B., Kallagher, H., 1990. Subduction of seamounts at the Java Trench: a view with long-range sidescan sonar. Tectonophysics 185, 51–65. https://doi.org/10.1016/0040-1951(90)90404-V
Meilano, I., Salman, R., Rahmadani, S., Shi, Q., Susilo, S., Lindsey, E., Supendi, P., Daryono, D., 2021. Source Characteristics of the 2019 Mw 6.5 Ambon, Eastern Indonesia, Earthquake Inferred from Seismic and Geodetic Data. Seismological Research Letters 92, 3339–3348. https://doi.org/10.1785/0220210021
Miura, H., Midorikawa, S., Kerle, N., 2013. Detection of Building Damage Areas of the 2006 Central Java, Indonesia, Earthquake through Digital Analysis of Optical Satellite Images. Earthquake Spectra 29, 453–473. https://doi.org/10.1193/1.4000139
Mori, J., Mooney, W.D., Afnimar, Kurniawan, S., Anaya, A.I., Widiyantoro, S., 2007. The 17 July 2006 Tsunami Earthquake in West Java, Indonesia. Seismological Research Letters 78, 201–207. https://doi.org/10.1785/gssrl.78.2.201
Nakajima, J., Uchida, N., Shiina, T., Hasegawa, A., Hacker, B.R., Kirby, S.H., 2013. Intermediate-depth earthquakes facilitated by eclogitization-related stresses. Geology 41, 659–662. https://doi.org/10.1130/G33796.1
Nakano, M., Kumagai, H., Miyakawa, K., Yamashina, T., Inoue, H., Ishida, M., Aoi, S., Morikawa, N., Harjadi, P., 2006. Source estimates of the May 2006 Java earthquake. Eos, Transactions American Geophysical Union 87, 493–494. https://doi.org/10.1029/2006EO450002
Newcomb, K.R., McCann, W.R., 1987. Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth 92, 421–439. https://doi.org/10.1029/JB092iB01p00421
Nghia Nguyen, C., Duong Nguyen, V., Minh Nguyen, L., Bang Phung, V., Huang, B.-S., Anh Duong, N., Khoi Le, Q., Giang Ha, T., Quoc Van, D., Vinh Long, H., Chen, P.-F., 2022. Characteristics of earthquake source and ground motions in Northern Vietnam investigated through the 2020 Moc Chau M5.0 earthquake sequence. Journal of Asian Earth Sciences 229, 105144. https://doi.org/10.1016/j.jseaes.2022.105144
Nurwihastuti, D.W., Sartohadi, J., Mardiatno, D., Nehren, U, Restu, 2014. Understanding of Earthquake Damage Pattern through Geomorphological Approach: A Case Study of 2006 Earthquake in Bantul, Yogyakarta, Indonesia. World Journal of Engineering and Technology 02, 61. https://doi.org/10.4236/wjet.2014.23B010
Okal, E.A., 2012. The south of Java earthquake of 1921 September 11: a negative search for a large interplate thrust event at the Java Trench. Geophysical Journal International 190, 1657–1672. https://doi.org/10.1111/j.1365-246X.2012.05570.x
Okazaki, K., Hirth, G., 2016. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature 530, 81–84. https://doi.org/10.1038/nature16501
Pawirodikromo, W., 2020. Middle value ground acceleration map and site effect in the Merapi sedimentary basin under the 2006 Yogyakarta, Indonesia earthquake. Nat Hazards 102, 419–443. https://doi.org/10.1007/s11069-020-03932-x
Pawirodikromo, W., 2018. The estimated PGA map of the Mw6.4 2006 Yogyakarta Indonesia earthquake, constructed from the Modified Mercalli intensity IMM. Bulletin of the New Zealand Society for Earthquake Engineering 51, 92–104. https://doi.org/10.5459/bnzsee.51.2.92-104
Pawirodikromo, W., Makrup, L., Teguh, M., Suryo, B., Hartantyo, E., 2019. Site Coefficient of Short Fa and Long period Fv Maps Constructed from the Probabilistic Seismic Hazard Analysis in Yogyakarta Special Province. MATEC Web of Conferences 280. https://doi.org/10.1051/matecconf/201928001001
Pawirodikromo, W., Wijaya, H.H., Sunarto, 2011. Intensity, attenuation and building damage from the 27th May 2006 Yogyakarta earthquake. Presented at the Disaster Management 2011, Orlando, USA, pp. 55–66. https://doi.org/10.2495/DMAN110061
Prieto, G.A., 2022. The Multitaper Spectrum Analysis Package in Python. Seismological Research Letters 93, 1922–1929. https://doi.org/10.1785/0220210332
Prieto, G.A., Florez, M., Barrett, S.A., Beroza, G.C., Pedraza, P., Blanco, J.F., Poveda, E., 2013. Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophysical Research Letters 40, 6064–6068. https://doi.org/10.1002/2013GL058109
Prieto, G.A., Parker, R.L., Vernon III, F.L., 2009. A Fortran 90 library for multitaper spectrum analysis. Computers & Geosciences 35, 1701–1710. https://doi.org/10.1016/j.cageo.2008.06.007
Ranero, C.R., Phipps Morgan, J., McIntosh, K., Reichert, C., 2003. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373. https://doi.org/10.1038/nature01961
Ranero, C.R., Villaseñor, A., Phipps Morgan, J., Weinrebe, W., 2005. Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems 6. https://doi.org/10.1029/2005GC000997
Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky, R., 2009. Global Multi-Resolution Topography synthesis. Geochemistry, Geophysics, Geosystems 10. https://doi.org/10.1029/2008GC002332
Saputra, A., Gomez, C., Delikostidis, I., Zawar-Reza, P., Hadmoko, D.S., Sartohadi, J., Setiawan, M.A., 2018. Determining Earthquake Susceptible Areas Southeast of Yogyakarta, Indonesia—Outcrop Analysis from Structure from Motion (SfM) and Geographic Information System (GIS). Geosciences 8, 132. https://doi.org/10.3390/geosciences8040132
Saputra, H., Wahyudi, W., Suardi, I., Anggraini, A., Suryanto, W., 2021. The waveform inversion of mainshock and aftershock data of the 2006 M6.3 Yogyakarta earthquake. Geoscience Letters 8, 9. https://doi.org/10.1186/s40562-021-00176-w
Schellart, W.P., Freeman, J., Stegman, D.R., Moresi, L., May, D., 2007. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311. https://doi.org/10.1038/nature05615
Semmane, F., Benabdeloued, B.Y.N., Heddar, A., Khelif, M.F., 2017. The 2014 Mihoub earthquake (Mw4.3), northern Algeria: empirical Green’s function analysis of the mainshock and the largest aftershock. Journal of Seismology 21, 1385–1395. https://doi.org/10.1007/s10950-017-9671-3
Seton, M., Müller, R.D., Zahirovic, S., Williams, S., Wright, N.M., Cannon, J., Whittaker, J.M., Matthews, K.J., McGirr, R., 2020. A Global Data Set of Present-Day Oceanic Crustal Age and Seafloor Spreading Parameters. Geochemistry, Geophysics, Geosystems 21, e2020GC009214. https://doi.org/10.1029/2020GC009214
Shao, G., Li, X., Ji, C., Maeda, T., 2011. Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves. Earth, Planets and Space 63, 559–564. https://doi.org/10.5047/eps.2011.06.028
Shiddiqi, H.A., Tun, P.P., Kyaw, T.L., Ottemöller, L., 2018. Source Study of the 24 August 2016 Mw 6.8 Chauk, Myanmar, Earthquake. Seismological Research Letters 89, 1773–1785. https://doi.org/10.1785/0220170278
Sianipar, D., Huang, B.-S., Ma, K.-F., Hsieh, M.-C., Chen, P.-F., Daryono, D., 2022. Similarities in the rupture process and cascading asperities between neighboring fault patches and seismic implications: The 2002–2009 Sumbawa (Indonesia) earthquakes with moment magnitudes of 6.2–6.6. Journal of Asian Earth Sciences 229, 105167. https://doi.org/10.1016/j.jseaes.2022.105167
Simandjuntak, T.O., Barber, A.J., 1996. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. SP 106, 185–201. https://doi.org/10.1144/GSL.SP.1996.106.01.12
Simons, W.J.F., Socquet, A., Vigny, C., Ambrosius, B. a. C., Haji Abu, S., Promthong, C., Subarya, C., Sarsito, D.A., Matheussen, S., Morgan, P., Spakman, W., 2007. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth 112. https://doi.org/10.1029/2005JB003868
Sirait, A.M.M., Meltzer, A.S., Waldhauser, F., Stachnik, J.C., Daryono, D., Fatchurochman, I., Jatnika, J., Sembiring, A.S., 2020. Analysis of the 15 December 2017 Mw 6.5 and the 23 January 2018 Mw 5.9 Java Earthquakes. Bulletin of the Seismological Society of America 110, 3050–3063. https://doi.org/10.1785/0120200046
Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., Kowada, A., 1999. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters 70, 59–80. https://doi.org/10.1785/gssrl.70.1.59
Strasser, F.O., Arango, M.C., Bommer, J.J., 2010. Scaling of the Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude. Seismological Research Letters 81, 941–950. https://doi.org/10.1785/gssrl.81.6.941
Sturges, H.A., 1926. The Choice of a Class Interval. Journal of the American Statistical Association 21, 65–66. https://doi.org/10.1080/01621459.1926.10502161
Supendi, P., Winder, T., Rawlinson, N., Bacon, C.A., Palgunadi, K.H., Simanjuntak, A., Kurniawan, A., Widiyantoro, S., Nugraha, A.D., Shiddiqi, H.A., Ardianto, Daryono, Adi, S.P., Karnawati, D., Priyobudi, Marliyani, G.I., Imran, I., Jatnika, J., 2023. A conjugate fault revealed by the destructive Mw 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia. Journal of Asian Earth Sciences 257, 105830. https://doi.org/10.1016/j.jseaes.2023.105830
Tian, D., Wei, S.S., Wang, W., Wang, F., 2022. Stress Drops of Intermediate-Depth and Deep Earthquakes in the Tonga Slab. Journal of Geophysical Research: Solid Earth 127, e2022JB025109. https://doi.org/10.1029/2022JB025109
Tibi, R., Bock, G., Estabrook, C.H., 2002. Seismic body wave constraint on mechanisms of intermediate-depth earthquakes. Journal of Geophysical Research: Solid Earth 107, ESE 1-1-ESE 1-23. https://doi.org/10.1029/2001JB000361
Tregoning, P., Brunner, F.K., Bock, Y., Puntodewo, S.S.O., McCaffrey, R., Genrich, J.F., Calais, E., Rais, J., Subarya, C., 1994. First geodetic measurement of convergence across the Java Trench. Geophysical Research Letters 21, 2135–2138. https://doi.org/10.1029/94GL01856
Tsuji, T., Yamamoto, K., Matsuoka, T., Yamada, Y., Onishi, K., Bahar, A., Meilano, I., Abidin, H.Z., 2009. Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth Planet Sp 61, e29–e32. https://doi.org/10.1186/BF03353189
Twardzik, C., Ji, C., 2015. The Mw7.9 2014 intraplate intermediate-depth Rat Islands earthquake and its relation to regional tectonics. Earth and Planetary Science Letters 431, 26–35. https://doi.org/10.1016/j.epsl.2015.08.033
Van Bemmelen, R.W., 1970. The Geology of Indonesia. Martinus Nijhoff: The Hague, The Netherlands.
Viegas, G., 2012. Source Parameters of the 16 July 2010 Mw 3.4 Germantown, Maryland, Earthquake. Seismological Research Letters 83, 933–944. https://doi.org/10.1785/0220110056
Wagner, D., Koulakov, I., Rabbel, W., Luehr, B.-G., Wittwer, A., Kopp, H., Bohm, M., Asch, G., MERAMEX Scientists, 2007. Joint inversion of active and passive seismic data in Central Java. Geophysical Journal International 170, 923–932. https://doi.org/10.1111/j.1365-246X.2007.03435.x
Wald, D.J., Quitoriano, V., Dengler, L.A., Dewey, J.W., 1999. Utilization of the Internet for Rapid Community Intensity Maps. Seismological Research Letters 70, 680–697. https://doi.org/10.1785/gssrl.70.6.680
Walter, T.R., Lühr, B., Sobiesiak, M., Grosser, H., Wang, R., Parolai, S., Wetzel, H.-U., Zschau, J., Milkereit, C., Günther, E., Wassermann, J., Behr, Y., Anggraini, A., Brotopuspito, K.S., Harjadi, P., 2007. Soft volcanic sediments compound 2006 Java earthquake disaster. Eos, Transactions American Geophysical Union 88, 486–486. https://doi.org/10.1029/2007EO460002
Walter, T.R., Wang, R., Luehr, B.-G., Wassermann, J., Behr, Y., Parolai, S., Anggraini, A., Günther, E., Sobiesiak, M., Grosser, H., Wetzel, H.-U., Milkereit, C., Sri Brotopuspito, P.J.K., Harjadi, P., Zschau, J., 2008. The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster? Geochemistry, Geophysics, Geosystems 9. https://doi.org/10.1029/2007GC001810
Wang, K., Bilek, S.L., 2014. Invited review paper: Fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24. https://doi.org/10.1016/j.tecto.2013.11.024
Warren, L.M., 2014. Dominant fault plane orientations of intermediate-depth earthquakes beneath South America. Journal of Geophysical Research: Solid Earth 119, 5762–5785. https://doi.org/10.1002/2013JB010856
Warren, L.M., Hughes, A.N., Silver, P.G., 2007. Earthquake mechanics and deformation in the Tonga-Kermadec subduction zone from fault plane orientations of intermediate- and deep-focus earthquakes. Journal of Geophysical Research: Solid Earth 112. https://doi.org/10.1029/2006JB004677
Warren, L.M., Langstaff, M.A., Silver, P.G., 2008. Fault plane orientations of intermediate-depth earthquakes in the Middle America Trench. Journal of Geophysical Research: Solid Earth 113. https://doi.org/10.1029/2007JB005028
Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84, 974–1002. https://doi.org/10.1785/BSSA0840040974
Wessel, P., Smith, W.H.F., 1991. Free software helps map and display data. Eos, Transactions American Geophysical Union 72, 441–446. https://doi.org/10.1029/90EO00319
Widiyantoro, S., Gunawan, E., Muhari, A., Rawlinson, N., Mori, J., Hanifa, N.R., Susilo, S., Supendi, P., Shiddiqi, H.A., Nugraha, A.D., Putra, H.E., 2020. Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Scientific Reports 10, 15274. https://doi.org/10.1038/s41598-020-72142-z
Widiyantoro, S., Pesicek, J.D., Thurber, C.H., 2011. Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geological Society, London, Special Publications 355, 139–155. https://doi.org/10.1144/SP355.7
Widiyantoro, S., van der Hilst, R., 1996. Structure and Evolution of Lithospheric Slab Beneath the Sunda Arc, Indonesia. Science 271, 1566–1570.
Widjajanti, N., Pratama, C., Parseno, Sunantyo, T.A., Heliani, L.S., Ma’ruf, B., Atunggal, D., Lestari, D., Ulinnuha, H., Pinasti, A., Ummi, R.F., 2020. Present-day crustal deformation revealed active tectonics in Yogyakarta, Indonesia inferred from GPS observations. Geodesy and Geodynamics 11, 135–142. https://doi.org/10.1016/j.geog.2020.02.001
Wijaya, H.H., 2009. Isoseismal, Kerentanan dan Rasio Kerusakan Bangunan Rumah Tinggal; Studi Kasus Gempa Bumi Yogyakarta 27 Mei 2006”, Thesis Magister Teknik Sipil (MTS), Universitas Islam Indonesia (in Bahasa Indonesia).
Wulandari, A., Anggraini, A., Suryanto, W., 2018. Hypocenter Analysis of Aftershocks Data of the Mw 6.3, 27 May 2006 Yogyakarta Earthquake Using Oct-Tree Importance Sampling Method. Applied Mechanics and Materials 881, 89–97. https://doi.org/10.4028/www.scientific.net/AMM.881.89
Xhafaj, E., Ma, K.-F., Chan, C.-H., Gao, J.-C., 2024. On the Use of Instrumental and Macroseismic Data to Evaluate Ground-Motion Models: The 2019 Mw 6.4 Durres, Albania, Earthquake Sequence. Seismological Research Letters. https://doi.org/10.1785/0220230205
Xu, L., Yunjun, Z., Ji, C., Meng, L., Fielding, E.J., Zinke, R., Bao, H., 2023. Understanding the Rupture Kinematics and Slip Model of the 2021 Mw 7.4 Maduo Earthquake: A Bilateral Event on Bifurcating Faults. Journal of Geophysical Research: Solid Earth 128, e2022JB025936. https://doi.org/10.1029/2022JB025936
Yagi, Y., 2006. Earthquake focal mechanism, IISEE Lecture Note 2006–2007. IISEE, BRI, Tsukuba.
Yamanaka, Y., Kikuchi, M., 2003. Source process of the recurrent Tokachi-oki earthquake on September 26, 2003, inferred from teleseismic body waves. Earth, Planets and Space 55, e21–e24. https://doi.org/10.1186/BF03352479
Yamasaki, T., Seno, T., 2003. Double seismic zone and dehydration embrittlement of the subducting slab. Journal of Geophysical Research: Solid Earth 108. https://doi.org/10.1029/2002JB001918
Ye, L., Lay, T., Bai, Y., Cheung, K.F., Kanamori, H., 2017. The 2017 Mw 8.2 Chiapas, Mexico, Earthquake: Energetic Slab Detachment. Geophysical Research Letters 44, 11,824-11,832. https://doi.org/10.1002/2017GL076085
Ye, L., Lay, T., Kanamori, H., 2020. Anomalously low aftershock productivity of the 2019 Mw 8.0 energetic intermediate-depth faulting beneath Peru. Earth and Planetary Science Letters 549, 116528. https://doi.org/10.1016/j.epsl.2020.116528
Ye, L., Lay, T., Kanamori, H., 2014. The 23 June 2014 Mw 7.9 Rat Islands archipelago, Alaska, intermediate depth earthquake. Geophysical Research Letters 41, 6389–6395. https://doi.org/10.1002/2014GL061153
Ye, L., Lay, T., Kanamori, H., Rivera, L., 2016. Rupture characteristics of major and great (Mw ≥ 7.0) megathrust earthquakes from 1990 to 2015: 1. Source parameter scaling relationships. Journal of Geophysical Research: Solid Earth 121, 826–844. https://doi.org/10.1002/2015JB012426
Yen, Y.-T., Ma, K.-F., 2011. Source-Scaling Relationship for M 4.6–8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America 101, 464–481. https://doi.org/10.1785/0120100046
Zhan, Z., 2020. Mechanisms and Implications of Deep Earthquakes. Annual Review of Earth and Planetary Sciences 48, 147–174. https://doi.org/10.1146/annurev-earth-053018-060314
指導教授 馬國鳳 陳伯飛(Kuo-Fong Ma Po-Fei Chen) 審核日期 2024-4-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明