參考文獻 |
[1] World Bank. 2019. Vietnam : Toward a Safe, Clean, and Resilient Water System.
[2] P. Q. Nhan, D. T. Trung and T. T. Le. 2019. Rationality of exploitation and use groundwater resources in Hanoi city. Scientific and Technical.
[3] D. D. Bui, A. Kawamura, T. N. Tong, H. Amaguchi and T. M. Trinh. 2012. Aquifer system for potential groundwater resources in Hanoi, Vietnam. Hydrological Processes, 26, 932-946, https://doi.org/10.1002/hyp.8305.
[4] T. C. Nguyen, V. G. Nguyen, Q. T. Phan and T. T. Dao. 2018. Evaluating The Impact of Groundwater Exploitation on Protected Aquifers in Hanoi. Technical Report.
[5] V. T. Tam and T. T. V. Nga. 2018. Assessment of urbanization impact on groundwater resources in Hanoi, Vietnam. Journal of environmental management, 227, 107-116, https://doi.org/10.1016/j.jenvman.2018.08.087.
[6] E. Chaussard, S. Wdowinski, E. Cabral-Cano and F. Amelung. 2014. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote sensing of environment, 140, 94-106, https://doi.org/10.1016/j.rse.2013.08.038.
[7] K. Terzaghi, R. B. Peck and G. Mesri. 1996. Soil mechanics in engineering practice. John Wiley & Sons.
[8] W.-C. Hung, C. Hwang, Y.-A. Chen, L. Zhang, K.-H. Chen, S.-H. Wei, D.-R. Huang and S.-H. Lin. 2018. Land subsidence in Chiayi, Taiwan, from compaction well, leveling and alos/palsar: Aquaculture-induced relative sea level rise. Remote Sensing, 10, 40, https://doi.org/10.3390/rs10010040.
[9] W.-C. Hung, C. Hwang, J.-C. Liou, Y.-S. Lin and H.-L. Yang. 2012. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology, 147, 78-90, https://doi.org/10.1016/j.enggeo.2012.07.018.
[10] V. T. Dao. 2011. Investigation and assessment of land subsidence in Hanoi. Technical Report.
[11] T. M. Thu and D. G. Fredlund. 2000. Modelling subsidence in the Hanoi City area, Vietnam. Canadian Geotechnical Journal, 37, 621-637, https://doi.org/10.1139/t99-126.
[12] V. K. Dang, C. Doubre, C. Weber, N. Gourmelen and F. Masson. 2014. Recent land subsidence caused by the rapid urban development in the Hanoi region (Vietnam) using ALOS InSAR data. Natural Hazards and Earth System Sciences Discussions, 14, 657, https://doi.org/10.5194/nhessd-1-6155-2013.
[13] D. H. T. Minh, Q. C. Tran, Q. N. Pham, T. T. Dang, D. A. Nguyen, I. El-Moussawi and T. Le Toan. 2019. Measuring Ground Subsidence in Ha Noi Through the Radar Interferometry Technique Using TerraSAR-X and Cosmos SkyMed Data. IEEE Journal of Selected Topics in Applied Earth Observations, 12, 3874-3884, https://doi.org/10.1109/JSTARS.2019.2937398.
[14] T. Q. Cuong, D. H. T. Minh and T. Le Toan. 2015. Ground subsidence monitoring in Vietnam by multi-temporal InSAR technique. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 3540-3543.
[15] T. S. Le, C.-P. Chang, X. T. Nguyen and A. Yhokha. 2016. TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sensing, 8, 338, https://doi.org/10.3390/rs8040338.
[16] M. Nguyen. 2018. Using Sentinel-1 TOPS SAR and SBAS for Land Subsidence Monitoring in Hanoi, Vietnam. National Central University, TW.
[17] M. Nguyen, Y. N. Lin, Q. C. Tran, C.-F. Ni, Y.-C. Chan, K.-H. Tseng and C.-P. Chang. 2022. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Engineering Geology, 299, 106555, https://doi.org/10.1016/j.enggeo.2022.106555.
[18] T. Fukuzono. 1985. A Method to Predict the Time of Slope Failure Caused by Rainfall Using the Inverse Number of Velocity of Surface Displacement. Landslides, 22, 8-13_1, 10.3313/jls1964.22.2_8.
[19] N. D. Rose and O. Hungr. 2007. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. International Journal of Rock Mechanics and Mining Sciences, 44, 308-320, https://doi.org/10.1016/j.ijrmms.2006.07.014.
[20] G. J. Dick, E. Eberhardt, A. G. Cabrejo-Liévano, D. Stead and N. D. Rose. 2014. Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Canadian Geotechnical Journal, 52, 515-529, 10.1139/cgj-2014-0028.
[21] P. Berardino, G. Fornaro, R. Lanari and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE transactions on geoscience and remote sensing, 40, 2375-2383, https://doi.org/10.1109/TGRS.2002.803792.
[22] D. A. Schmidt and R. Bürgmann. 2003. Time‐dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. Journal of Geophysical Research: Solid Earth, 108, https://doi.org/10.1029/2002JB002267.
[23] T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N. Casagli. 2017. Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides, 14, 517-534, 10.1007/s10346-016-0731-5.
[24] D. M. Franks, M. Stringer, L. A. Torres-Cruz, E. Baker, R. Valenta, K. Thygesen, A. Matthews, J. Howchin and S. Barrie. 2021. Tailings facility disclosures reveal stability risks. Scientific Reports, 11, 5353, 10.1038/s41598-021-84897-0.
[25] J. C. Santamarina, L. A. Torres-Cruz and R. C. Bachus. 2019. Why coal ash and tailings dam disasters occur. Science, 364, 526-528, 10.1126/science.aax1927.
[26] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung and H. H. Liu. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995, doi:10.1098/rspa.1998.0193.
[27] T. van der Horst, M. M. Rutten, N. C. van de Giesen and R. F. Hanssen. 2018. Monitoring land subsidence in Yangon, Myanmar using Sentinel-1 persistent scatterer interferometry and assessment of driving mechanisms. Remote Sensing of Environment, 217, 101-110, https://doi.org/10.1016/j.rse.2018.08.004.
[28] L. Ge, A. H.-M. Ng, X. Li, H. Z. Abidin and I. Gumilar. 2014. Land subsidence characteristics of Bandung Basin as revealed by ENVISAT ASAR and ALOS PALSAR interferometry. Remote Sensing of Environment, 154, 46-60, https://doi.org/10.1016/j.rse.2014.08.004.
[29] H. Z. Abidin, H. Andreas, I. Gumilar, Y. Fukuda, Y. E. Pohan and T. Deguchi. 2011. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59, 1753, https://doi.org/10.1007/s11069-011-9866-9.
[30] GSO. 2019. Vietnam population and housing census. General Statistics Office.
[31] D. P. Hoang, B. Q. Pham and T. T. Dao. 2017. Assessment of groundwater reserve in Hanoi. Technical Report.
[32] J. Glass, D. A. Via Rico, C. Stefan and T. T. V. Nga. 2018. Simulation of the impact of managed aquifer recharge on the groundwater system in Hanoi, Vietnam. Hydrogeology Journal, 26, 2427-2442, https://doi.org/10.1007/s10040-018-1779-1.
[33] D. P. Hoang, B. Q. Pham, T. T. Dao and V. T. Le. 2017. Hydrogeological Structures of Protected Aquifers in Hanoi. Technical Report.
[34] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank and D. Alsdorf. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, https://doi.org/10.1029/2005RG000183.
[35] V. H. Vu and B. J. Merkel. 2019. Estimating groundwater recharge for Hanoi, Vietnam. Science of The Total Environment, 651, 1047-1057, https://doi.org/10.1016/j.scitotenv.2018.09.225.
[36] A. Hooper. 2008. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL034654.
[37] A. Hooper, P. Segall and H. Zebker. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112, https://doi.org/10.1029/2006JB004763.
[38] P. S. Agram, R. Jolivet, B. Riel, Y. N. Lin, M. Simons, E. Hetland, M. P. Doin and C. Lasserre. 2013. New Radar Interferometric Time Series Analysis Toolbox Released. Eos, Transactions American Geophysical Union, 94, 69-70, https://doi.org/10.1002/2013EO070001.
[39] F. De Zan and G. Gomba. 2018. Vegetation and soil moisture inversion from SAR closure phases: First experiments and results. Remote sensing of environment, 217, 562-572, https://doi.org/10.1016/j.rse.2018.08.034.
[40] H. Ansari, F. D. Zan and A. Parizzi. 2020. Study of Systematic Bias in Measuring Surface Deformation With SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 59, 1285-1301, https://doi.org/10.1109/TGRS.2020.3003421.
[41] H. Ansari, F. D. Zan and R. Bamler. 2017. Sequential Estimator: Toward Efficient InSAR Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing, 55, 5637-5652, https://doi.org/10.1109/TGRS.2017.2711037.
[42] R. Jolivet, P. S. Agram, N. Y. Lin, M. Simons, M.-P. Doin, G. Peltzer and Z. Li. 2014. Improving InSAR geodesy using Global Atmospheric Models. Journal of Geophysical Research: Solid Earth, 119, 2324-2341, https://doi.org/10.1002/2013JB010588.
[43] H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume and J.-N. Thépaut. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803.
[44] Q. C. Tran. 2016. Subsidence monitoring in Ha Noi by differential InSAR. Vietnam National Science Project Code DTDL.2012-T/28.
[45] R. F. Hanssen. 2001. Radar interferometry: data interpretation and error analysis. Springer Science & Business Media.
[46] G. Blewitt, W. C. Hammond and C. Kreemer. 2018. Harnessing the GPS data explosion for interdisciplinary science. Eos, 99, https://doi.org/10.1029/2018EO104623.
[47] NAWAPI. 2008. National Center for Water Resources Planning and Investigation.
[48] D. C. Helm. 1975. One-dimensional simulation of aquifer system compaction near Pixley, California: 1. Constant parameters. Water Resources Research, 11, 465-478, https://doi.org/10.1029/WR011i003p00465.
[49] M. Béjar-Pizarro, P. Ezquerro, G. Herrera, R. Tomás, C. Guardiola-Albert, J. M. Ruiz Hernández, J. A. Fernández Merodo, M. Marchamalo and R. Martínez. 2017. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer, Central Spain. Journal of Hydrology, 547, 678-689, https://doi.org/10.1016/j.jhydrol.2017.02.011.
[50] D. Galloway, D. R. Jones and S. E. Ingebritsen. 1999. Land Subsidence in the United States. U.S. Geological Survey.
[51] R. G. Smith, R. Knight, J. Chen, J. Reeves, H. Zebker, T. Farr and Z. Liu. 2017. Estimating the permanent loss of groundwater storage in the southern San Joaquin Valley, California. Water Resources Research, 53, 2133-2148, https://doi.org/10.1002/2016WR019861.
[52] W.-C. Hung, C. Hwang, M. Sneed, Y.-A. Chen, C.-H. Chu and S.-H. Lin. 2021. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resources Research, 57, https://doi.org/10.1029/2020WR028194.
[53] M. Chlieh, J.-P. Avouac, V. Hjorleifsdottir, T.-R. A. Song, C. Ji, K. Sieh, A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock and J. Galetzka. 2007. Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra–Andaman Earthquake of 2004. Bulletin of the Seismological Society of America, 97, S152-S173, https://doi.org/10.1785/0120050631.
[54] F. S. Riley. 1969. Analysis of borehole extensometer data from central California. Land subsidence, 2, 423-431, http://hydrologie.org/redbooks/a088/088047.pdf.
[55] Y. Yamada, T. Tsuchida, N. M. Kyaw, T. Aoyama, M. M. S. Hlaing and R. Hashimoto. 2019. A study on physical and mechanical properties for soft to firm clays in Yangon area – Properties of clays deposit at the sedimentary basins in Myanmar. Soils and Foundations, 59, 2279-2298, https://doi.org/10.1016/j.sandf.2019.05.008.
[56] G. Gomba, A. Parizzi, F. D. Zan, M. Eineder and R. Bamler. 2016. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method. IEEE Transactions on Geoscience and Remote Sensing, 54, 1446-1461, https://doi.org/10.1109/TGRS.2015.2481079.
[57] M. Sneed. 2001. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California Report 2001-35.
[58] T. T. Thoang and P. H. Giao. 2015. Subsurface characterization and prediction of land subsidence for HCM City, Vietnam. Engineering Geology, 199, 107-124, https://doi.org/10.1016/j.enggeo.2015.10.009.
[59] S. Kaneko and T. Toyota. 2011. Long-Term Urbanization and Land Subsidence in Asian Megacities: An Indicators System Approach. Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities, 249-270, https://doi.org/10.1007/978-4-431-53904-9_13.
[60] E. Chaussard, F. Amelung, H. Abidin and S.-H. Hong. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150-161, https://doi.org/10.1016/j.rse.2012.10.015.
[61] D. Raucoules, G. Le Cozannet, G. Wöppelmann, M. de Michele, M. Gravelle, A. Daag and M. Marcos. 2013. High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement. Remote Sensing of Environment, 139, 386-397, https://doi.org/10.1016/j.rse.2013.08.021.
[62] D. H. Minh, L. Van Trung and T. L. Toan. 2015. Mapping Ground Subsidence Phenomena in Ho Chi Minh City through the Radar Interferometry Technique Using ALOS PALSAR Data. Remote Sensing, 7, https://doi.org/10.3390/rs70708543.
[63] N. Phien-wej, P. H. Giao and P. Nutalaya. 2006. Land subsidence in Bangkok, Thailand. Engineering Geology, 82, 187-201, https://doi.org/10.1016/j.enggeo.2005.10.004.
[64] H. Kooi and G. Erkens. 2020. Creep consolidation in land subsidence modelling; integrating geotechnical and hydrological approaches in a new MODFLOW package (SUB-CR). Proc. IAHS, 382, 499-503, https://doi.org/10.5194/piahs-382-499-2020.
[65] K. K. Khaing. 2016. Chapter 14 - Groundwater Environment in Yangon, Myanmar. Groundwater Environment in Asian Cities, 317-335, https://doi.org/10.1016/B978-0-12-803166-7.00014-3.
[66] A. Aobpaet, M. C. Cuenca, A. Hooper and I. Trisirisatayawong. 2013. InSAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34, 2969-2982, https://doi.org/10.1080/01431161.2012.756596.
[67] M. S. Babel, A. A. Rivas and S. Kallidaikurichi. 2010. Municipal Water Supply Management in Bangkok: Achievements and Lessons. International Journal of Water Resources Development, 26, 193-217, https://doi.org/10.1080/07900621003710661.
[68] R. S. Clemente, G. Q. Tabios, R. P. Abracosa, C. C. David and A. B. Inocencio. 2001. Groundwater supply in Metro Manila: Distribution, environmental and economic assessment. Discussion Paper Series, 2001–2006. PIDS.
[69] NWRB. 2004. Water resources assessment for prioritized critical areas (phase I): Final report Metro Manila. National Water Resources Board.
[70] W. Mijał. 2018. Coal mining and coal preparation in Vietnam. Inżynieria Mineralna, 19
[71] N. Quynh Nga, N. Van Hau, P. Tu Phuong and C. H. U. Thi Khanh Ly. 2021. Current Status of Coal Mining and Some Highlights in the 2030 Development Plan of Coal Industry in Vietnam. Inżynieria Mineralna, 1, 10.29227/IM-2021-02-34.
[72] Y. N. Lin, E. Park, Y. Wang, Y. P. Quek, J. Lim, E. Alcantara and H. H. Loc. 2021. The 2020 Hpakant Jade Mine Disaster, Myanmar: A multi-sensor investigation for slope failure. ISPRS Journal of Photogrammetry and Remote Sensing, 177, 291-305, https://doi.org/10.1016/j.isprsjprs.2021.05.015.
[73] T. B. Standard. 2023. Four killed in Vietnam coal mine collapse. The Business Standard.
[74] Lao-Dong. 2023. Worker′s body found in accident in Southeast Asia′s deepest coal mine. Lao Dong.
[75] M. Uysal, A. S. Toprak and N. Polat. 2015. DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543, https://doi.org/10.1016/j.measurement.2015.06.010.
[76] J. Xiang, J. Chen, G. Sofia, Y. Tian and P. Tarolli. 2018. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environmental Earth Sciences, 77, 220, 10.1007/s12665-018-7383-9.
[77] H. Ren, Y. Zhao, W. Xiao and Z. Hu. 2019. A review of UAV monitoring in mining areas: current status and future perspectives. International Journal of Coal Science & Technology, 6, 320-333, 10.1007/s40789-019-00264-5.
[78] A. C. Pandey and A. Kumar. 2014. Analysing topographical changes in open cast coal-mining region of Patratu, Jharkhand using CARTOSAT-I Stereopair satellite images. Geocarto International, 29, 731-744, 10.1080/10106049.2013.838309.
[79] J. Takaku, T. Tadono and K. Tsutsui. 2014. Generation of High Resolution Global DSM from ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-4, 243-248, 10.5194/isprsarchives-XL-4-243-2014.
[80] N. Casagli, E. Intrieri, V. Tofani, G. Gigli and F. Raspini. 2023. Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4, 51-64, 10.1038/s43017-022-00373-x.
[81] A. C. Mondini, F. Guzzetti, K.-T. Chang, O. Monserrat, T. R. Martha and A. Manconi. 2021. Landslide failures detection and mapping using Synthetic Aperture Radar: Past, present and future. Earth-Science Reviews, 216, 103574, https://doi.org/10.1016/j.earscirev.2021.103574.
[82] E. Intrieri, T. Carlà and G. Gigli. 2019. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Science Reviews, 193, 333-349, https://doi.org/10.1016/j.earscirev.2019.03.019.
[83] E. Tymofyeyeva and Y. Fialko. 2015. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. Journal of Geophysical Research: Solid Earth, 120, 5952-5963, https://doi.org/10.1002/2015JB011886.
[84] E. Fahrland, P. Jacob, H. Schrader and H. Kahabka. 2020. Copernicus DEM Product Handbook. Airbus defence and space, version, 2, https://doi.org/10.5270/ESA-c5d3d65.
[85] M. Lachaise, C. González, P. Rizzoli, B. Schweiβhelm and M. Zink. 2022. The New Tandem-X DEM Change Maps Product. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 5432-5435.
[86] B. U. I. Xuan Nam, N. Hoang, T. Quang Hieu, B. U. I. Hoang Bac, N. Quoc Long, N. Dinh An, L. E. Thi Thu Hoa and P. Van Viet. 2022. A Lasso and Elastic-Net Regularized Generalized Linear Model for Predicting Blast-Induced Air Over-pressure in Open-Pit Mines. Inżynieria Mineralna, 2, 10.29227/IM-2019-02-52.
[87] UNESCO. 1994. Ha Long Bay - Cat Ba Archipelago. UNESCO Workd Heritage Centre 1992 - 2024.
[88] R. Crippen, S. Buckley, P. Agram, E. Belz, E. Gurrola, S. Hensley, M. Kobrick, M. Lavalle, J. Martin, M. Neumann, Q. Nguyen, P. Rosen, J. Shimada, M. Simard and W. Tung. 2016. NASADEM GLOBAL ELEVATION MODEL: METHODS AND PROGRESS. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B4, 125-128, 10.5194/isprs-archives-XLI-B4-125-2016.
[89] B. Wessel. 2018. TanDEM-X ground segment–DEM products specification document. https://tandemx-science.dlr.de/.
[90] T.-N.-D. Tran, B. Q. Nguyen, N. D. Vo, M.-H. Le, Q.-D. Nguyen, V. Lakshmi and J. D. Bolten. 2023. Quantification of global Digital Elevation Model (DEM) – A case study of the newly released NASADEM for a river basin in Central Vietnam. Journal of Hydrology: Regional Studies, 45, 101282, https://doi.org/10.1016/j.ejrh.2022.101282.
[91] Y. Liu, N. Pears, P. L. Rosin and P. Huber. 2020. 3D imaging, analysis and applications. Springer.
[92] H. Hasegawa, K. Matsuo, M. Koarai, N. Watanabe, H. Masaharu and Y. Fukushima. 2000. DEM accuracy and the base to height (B/H) ratio of stereo images. International Archives of Photogrammetry and Remote Sensing, 33, 356-359, https://www.isprs.org/proceedings/xxxiii/congress/part4/356_XXXIII-part4.pdf.
[93] S. Ghuffar. 2018. DEM Generation from Multi Satellite PlanetScope Imagery. Remote Sensing.
[94] A. Metashape. 2023. AgiSoft Metashape Professional (Version 2.1.1) (Software). (2023*).
[95] H. Fattahi, P. S. Agram, E. Tymofyeyeva and D. P. Bekaert. 2019. FRInGE; Full-Resolution InSAR timeseries using Generalized Eigenvectors. G11B-0514.
[96] E. Tymofyeyeva, P. S. Agram, H. Fattahi and D. P. Bekaert. 2019. Transient creep on the Concord Fault, Eastern Bay Area, revealed by InSAR time series. T13D-0304.
[97] C. Yu, Z. Li, N. T. Penna and P. Crippa. 2018. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123, 9202-9222, https://doi.org/10.1029/2017JB015305.
[98] G. Wang, X.-Y. Chen, F.-L. Qiao, Z. Wu and N. E. Huang. 2010. ON INTRINSIC MODE FUNCTION. Advances in Adaptive Data Analysis, 02, 277-293, 10.1142/S1793536910000549.
[99] M. Saito. 1969. Forecasting time of slope failure by tertiary creep. Proceedings of the 7th international conference on soil mechanics and foundation engineering, Mexico City, Mexico. Citeseer, 677-683.
[100] B. Voight. 1988. A method for prediction of volcanic eruptions. Nature, 332, 125-130, 10.1038/332125a0.
[101] P. Roy, T. R. Martha, K. Khanna, N. Jain and K. V. Kumar. 2022. Time and path prediction of landslides using InSAR and flow model. Remote Sensing of Environment, 271, 112899, https://doi.org/10.1016/j.rse.2022.112899.
[102] T. Carlà, P. Farina, E. Intrieri, H. Ketizmen and N. Casagli. 2018. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology, 235, 39-52, https://doi.org/10.1016/j.enggeo.2018.01.021. |