博碩士論文 90521031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.22.250.142
姓名 謝孟緯(Meng-wei Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽鍺異質接面雙極性電晶體在動態、功率與雜訊特性之研究
(The Investigation of Dynamic, Power and Noise Characteristics on SiGe Heterojunction Bipolar Transistors)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著先進製程的蓬勃發展,矽基板矽鍺異質接面雙極性電晶體的電流增益截止頻率已發展至350 GHz,而較低的製作成本、低溫環境的適應性、與金氧半場效電晶體的高整合性以及可將數位和類比電路整合於同一基板的優點使得矽鍺異質接面雙極性電晶體更有吸引力。由於基極厚度的持續變薄使其在高頻特性上獲得大幅的提升,因此矽鍺異質接面雙極性電晶體已被廣泛的建議並使用於無線收發電路。為了達到這些目標,一個準確的等效電路模型以及詳細的元件特性分析對電路設計者而言是非常重要的。
為了要找出最佳的元件佈局,我們研究了三個擁有相同集極面積與不同接點結構的0.18微米矽鍺異質接面雙極性電晶體的高頻與功率特性。並利用大訊號VBIC等效電路模型萃取出之成分來做傳輸延遲時間分析。經由分析矽鍺異質接面雙極性電晶體的傳輸延遲時間,我們可以得到一個具有較高電流增益截止頻率的元件佈局。這個最佳元件佈局也可產生最高的功率輸出,在操作頻率為2.4 GHz時,其最大輸出功率為6.4 dBm且轉換效率為40 %。
在此論文中我們也量測了矽鍺異質接面雙極性電晶體在不同溫度下的直流與微波特性,與溫度相關的直流、高頻與功率特性在此有詳盡的分析,利用分析傳輸延遲時間,我們可以發現矽鍺異質接面雙極性電晶體藉由縮短基極與射極傳輸延遲時間來得到較高在低溫時的電流增益截止頻率。此外,在高電壓型態元件中,當高注入效應產生時在射極-基極接面的價帶不連續面會產生一個寄生的導電帶能障,這個寄生的能障會縮小元件的電流增益與電流增益截止頻率並限制電流-電壓曲線的寬度,尤其是在低溫環境中,因此,所量測到的輸出功率、轉換效率與線性度都會隨著降溫明顯的下降,但此寄生能障效應不會在高速型態元件中產生,所以可以在低溫環境中發揮較佳的功率特性。
在這個研究中,我們也探討矽鍺異質接面雙極性電晶體在常溫與低溫環境中的低頻雜訊特性,經由比較高速與高電壓型態元件的1/f雜訊,高速元件中的高射極參雜會產生較高的雜質濃度並增加射極電流的1/f雜訊,此外,在高電壓型態元件中的寄生能障效應也會影響1/f雜訊,由於寄生能障效應在射極-基極接面產生大量的載子累積也產生了額外的基極複合電流,此複合電流提高了元件的低頻雜訊。
摘要(英) With the technological advances, the Si-based SiGe HBTs was already developed to over 350 GHz. The low cost of fabrication, high integration with CMOS process and the possibility of placing both analog and digital circuits on the same chip so as to improve the overall performance made SiGe BiCMOS technology attractive. The thin out of base layer improves the speed of HBTs significantly and hence the SiGe BiCMOS technologies have been widely recommended and used in wireless front-end transceiver for its high integration level, low cost, and good adaptability with cooling. To achieve these goals, the accurate device model and detailed device characteristics are important for the circuit designers.
In order to find out the optimal layout for rf properties, we investigated the high-frequency and power properties of three 0.18 um SiGe HBTs with different contact configurations and the same emitter area. The large-signal VBIC model is used to extract the equivalent components for the transit delay time analysis. By using the analysis of transit delay time for SiGe HBTs, we can obtain an optimal contact configuration layout to achieve higher cutoff frequency. Furthermore, regarding the maximum output power, the SiGe HBT with optimal layout provides highest of 6.4 dBm maximum output power and a PAE of 40 % at 2.4 GHz.
We also measured the dc and rf characteristic for npn SiGe HBTs with various temperatures. Detailed analyses of temperature-dependent on dc, high-frequency parameters, and power performances are presented. By analyzing the emitter-collector transit time, the temperature-dependent of cutoff frequency was characterized at different functionalities of SiGe HBTs to explain the improvement in fT with reducing the base and collector transit delay time at cryogenic temperature. Furthermore, in SiGe HBTs without SIC, the valance band discontinuity at base-collector heterojunction induces a parasitic conduction band barrier at the onset of high-injection effect. This parasitic conduction band barrier reduces the current gain and cutoff frequency and limit the broad of dc I-V curve significantly especially at cryogenic temperatures. Therefore, the measured output power, power-added efficiency and linearity at 2.4 GHz decrease significantly with decreasing operation temperatures. This heterojunction barrier effect in SiGe HBT with SIC is negligible and thus the device achieves better power performance at cryogenic temperatures compared with that in a SiGe HBT without SIC.
In this study, we investigated the low-frequency noise in SiGe HBTs at room and cryogenic temperatures. By comparing the magnitude of 1/f noise of the SiGe HBTs with and without SIC, we show that the impurities at the collector produced by the incomplete activation of the implanted ions cause an increase in the collector current 1/f noise spectrum. Thus, SiGe HBT with SIC exhibits higher collector noise current spectra due to the inactive ions in the collector. Furthermore, the HBE on SiGe HBT without SIC also influences the 1/f noise property at the onset of high-injection effect. The 1/f noise degrades due to the increasing of recombination base current which produced by the accumulation of carriers at the CB junction.
關鍵字(中) ★ 雜訊
★ 功率
★ 異質接面雙極性電晶體
★ 矽鍺
★ 低溫
關鍵字(英) ★ cryogenic temperatures
★ power
★ noise
★ SiGe Heterojunction Bipolar Transistor
★ SiGe
論文目次 中文摘要 i
Abstract iii
Table of contents v
Figure captions viii
Table captions xii
Chapter I Introduction
I.1 Background 1
I.2 The SiGe HBT 2
I.3 Thesis Organization 3
Chapter II The Basic Concept and Modified Latge-Signal SiGe HBT Model
II.1 Introduction 5
II.2 The Selectively Implanted Collector on SiGe HBT 6
II.3 The Large-Signal Model for 0.18 um SiGe HBT 10
II.4 Summary 15
Chapter III The Dynamic Characteristics of 0.18 um SiGe HBTs
III.1 Introduction 16
III.2 Basic RF Performance 17
III.2.1 Experimental measurement set-up 18
III.2.2 SiGe device microwave characteristic 18
III.2.3 Transit time analysis 21
III.3 Geometry-Dependent RF Properties on SiGe HBT 24
III.3.1 The device layouts and measurement setup 24
III.3.2 The rf performance and transit time analysis 25
III.3.3 The layout-dependent microwave noise characteristics 29
III.4 The DC and High Frequency Characteristics of SiGe HBTs at Cryogenic Temperatures 30
III.4.1 The variable temperature measurement setup 31
III.4.2 The impact of temperature on SiGe HBT performance 32
III.4.3 The high-speed characteristic at cryogenic temperatures 34
III.5 Summary 40
Chapter IV The Power Performances of SiGe HBTs at Cryogenic Temperatures
IV.1 Introduction 41
IV.2 The Low Temperature Load-Pull Power Measurement Setup 42
IV.3 The Heterojunction Barrier Effect on SiGe HBTs 43
IV.3.1 The form of HBE 44
IV.3.2 High-injection is SiGe HBTs 45
IV.3.3 Experimental Results and Simulations 47
IV.4 The Power Properties of SiGe HBTs at Cryogenic Temperatures 53
IV.5 The Linearity of SiGe HBTs at Cryogenic Temperatures 59
IV.6 Summary 62
Chapter V The Noise Characteristics of SiGe HBTs
V.1 Introduction 64
V.2 Low-Frequency Noise on SiGe HBTs 65
V.2.1 The LF noise measurement setup and methods 65
V.2.2 The LF noise properties of SiGe HBTs with and without SIC 71
V.2.3 The LF Figures-of-Merit 79
V.2.4 The HBE on LF noise of SiGe HBT 81
V.3 RF Noise on SiGe HBTs 87
V.3.1 The rf noise measurement setup 88
V.3.2 The rf noise on SiGe HBTs 89
V.4 Summary 90
Chapter VI Conclusions 92
Reference 95
Publication List 101
參考文獻 [1] M. R. Murti, J. Laskar, S. Nuttinck, S. Yoo, A. Raghavan, J. I. Bergman, J. Bautista, R. Lai, R. Grundbacher, M. Barsky, P. Chin, P. H. Liu, “Temperature-dependent small-signal and noise parameter measurements and modeling on InP HEMTs,” IEEE Trans. on Microwave Theory Tech., vol. 48, no. 12, pp. 2579-2587, Dec. 2000.
[2] N. Wadefalk, A. Mellberg, I. Angelov, M. E. Barsky, S. Bui, E. Choumas, R. W. Grundbacher, E. L. Kollberg, R. Lai, N. Rorsman, P. Starski, J. Stenarson, D. C. Streit, H. Zirath, “Cryogenic Wide-Band Ultra-Low-Noise IF Amplifiers Operating at Ultra-Low DC Power,” IEEE Trans. on Microwave Theory Tech., vol. 51, no. 6, pp. 1705-1711, June 2003.
[3] J. J. Bautista, J. G. Bowen, N. E. Fernandez, Z. Fujiwara, J. Loreman, S. Petty, J. L. Prater, R. Grunbacher, R. Lai, M. Nishimoto, M. R. Murti, J. Laskar, “Cryogenic, X-band and Ka-band InP HEMT based LNAs for the Deep Space Network,” in Proc. IEEE Aerospace Conference 2001, vol. 2 pp. 829-842, March 2001.
[4] K. Washio, “SiGe HBT and BiCMOS technologies,” in IEEE Electron Devices Meeting Tech. Dig., pp. 113-116, 2003.
[5] J. D. Cressler, D. D. L. Tang, and E. S. Yang, “Injection-Induced Bandgap Narrowing and Its Effects on the Low-Temperature Operation of Silicon Bipolar Transistor,” IEEE Trans. on Electron Devices, vol. 36, no. 11, pp. 2576-2586, November 1989.
[6] M. S. Peter, G. A. M. Hurkx, C. E. Timmering, “Selectively-Implanted Collector Profile Optimisation for High-Speed Vertical Bipolar Transistors,” in Proc. Solid-State Device Research Conference 1997, no. 27, pp. 308-311, Sep. 1997.
[7] R. H. Havemann, R. H. Eklund, “Process Integration Issues for Submicron BiCMOS Technology,” Solid State Technology, vol.35, pp. 71-76, June 1992.
[8] D. L. Harame, B. S. Meyerson, “The early history of IBM’s SiGe mixed signal technology,” IEEE Trans. on Electron Devices, vol. 48, pp. 2555-2567, 2001.
[9] B. Jagannathan, M. Khater, F. Pagette, J. S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, “Self-aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., Vol. 23, pp. 258-260, 2002.
[10] J. S. Rieh, D. Greenberg, B. Jagannathan, G. Freeman, S. Subbanna, “Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors,” in Silicon Monolithic Integrated Circuits in RF Systems Dig., pp. 110-113, Sept. 2001.
[11] J. D. Cressler, J. H. Comfort, E. F. Crabbe, G. L. Patton, J. M. C. Stork, J. Y. C. Sun, B. S. Meyerson, "On the Profile Design and Optimization of Epitaxial Si- and SiGe- Base Bipolar Technology for 77K Applications - Part I: Transistor DC Design Considerations," IEEE Trans. on Electron Devices, vol. 40, no. 3, pp. 525-541, March 1993.
[12] B. Senapati, C.K. Maiti, “Advanced SPICE modeling of SiGe HBTs using VBIC model,” in Proc. IEE Circuits Devices System 2002, vol. 149 no. 2, pp. 129-135, April 2002.
[13] G.W. Huang, K. M. Chen, J.F. Kuan, Y.M. Deng, S.Y. Wen, D.Y. Chiu, “Silicon BJT Modeling Using VBIC Model,” in Proc. IEEE APMC2001 , pp.240.243, 2001.
[14] G. M. Kull, L. W. Nagel, S. W. Lee, P. Lloyd, E. J. Prendergast, H. Dirks, “A unified circuit model for bipolar transistors including quasi-saturation effects,” IEEE Trans. on Electron Devices, vol. 32, no. 11, pp. 2415-2419, Nov. 1985.
[15] P. Weil, L. McNamee, “Simulation of excess phase in bipolar transistors,” IEEE Trans. on Circuit and Systems , vol. 25, no. 2, pp. 114-116, Feb. 1978.
[16] J. S. Rieh, M. Khater, G. Freeman, D. Ahlgren, “SiGe HBT Without Selectively Implanted Collector (SIC) Exhibiting fmax=310 GHz and BVCEO=2 V,” IEEE Trans. on Electron Devices, vol. 53, no. 9, pp. 2407-2409, Sept. 2006.
[17] H. Cho, D. Burk, “A three-step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans. on Electron Devices, vol. 38, pp. 1371-1375, 1991.
[18] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalluin, F. Alexandre, J. Godin, “Measurement of Base and Collector Transit Times in Thin-Base InGaAs/InP HBT,” IEEE, Electron Device Lett., vol. 24 no. 7, pp. 430-432, July 2003.
[19] D. R. Greenberg, B. Jagannathan, S. Sweeney, G. Freeman, D. Ahlgren, “Noise performance of a low base resistance 200 GHz SiGe technology,” Tech. Digest IEDM 2002, pp. 787-790, 2002.
[20] D. Greenberg, S. Sweeney, G. Freeman, D. Ahlgren, “Low-noise performance near BVCEO in a 200 GHz SiGe technology at different collector design points,” IEEE MTT-S Int. Microwave Symp. Dig. 2003, pp. 113-116, 2003
[21] R. J. Hawkins, “Limitations of Nielson’s and related noise equations applied to microwave bipolar transistors, and a new expression for the frequency and current dependent noise figure, ” Solid-State Electron., vol. 20, pp. 191-196, 1977.
[22] Y. K. Chen, R. N. Nottenburg, M. P. Panish, R. A. Hamm, and D. A. Humphrey, “Microwave noise performance of InP/InGaAs heterostructure bipolar transistors,” IEEE Electron Device Letters., vol. 10, pp. 470-473, 1989.
[23] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley, pp. 579-585, 1981.
[24] D. B. M. Klaassen, J.W. Slotboom and H. C. de Graaö, "Unified apparent bandgap narrowing in n- and p-type silicon," Solid State Electron., vol.35, pp. 125-129, 1992.
[25] E. F. Crabbe, J. D. Cressler, J. H. Comfort, G. L. Patton, J. M. C. Stork, J. Y. C. Sun, "Current Gain Rolloff in Graded-Base SiGe Heterojunction Bipolar Transistors," IEEE Trans. on Electron Devices, vol. 14, no. 4, pp. 193-195, April 1993.
[26] B. S. Meyerson, "Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition," Appl. Phys. Lett., vol.48, pp. 797-799, 1986.
[27] J. D. Cressler, D. D. Tang, K. A. Jenkins, G. P. Li, E. S. Yang, "On the low-temperatures static and dynamic properties of high-performance silicon bipolar transistors," IEEE Trans. on Electron Devices, vol. 36, no. 8, pp. 1489-1502, Aug. 1989.
[28] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York: J. Wiley & Sons, pp. 225-274, 1998.
[29] T. M. Burbaev, E. A. Bobrik, V. A. Kurbatov, M. M. Rzaev, N. N. Sibeldin, V. A. Tsvetkov, F. Schaffler, " Electron-hole liquid in strained SiGe layers of silicon heterostructures," JETP Lett., vol.85, no. 7, pp. 331-334, June 1986.
[30] D. L. Harame, J. M. C. Stork, B. S. Meyerson, E. F. Crabbe, G. L. Patton, G. J. Scilla, E. de Fresart, A. A. Bright, C. Stanis, A. C. Megdanis, M. P. Manny, E. J. Petrillo, M. Dimeo, R. C. McIntosh, K. K. Chan, “SiGe-base PNP transistors fabricated with n-type UHV/CVD LTE in a `No Dt' process,” in Proc. IEEE Symp. VLSI Technology 1990, pp. 47-48, June 1990.
[31] J. S. Yuan, J. Song, “Base-collector heterojunction barrier effect of the SiGe HBT at high current densities,” in Proc. IEEE Electron Devices Meeting 1998, pp.101-104, Aug. 1998.
[32] A. J. Joseph, J. D. Cressler, D. M. Richey, D. L. Harame. “Impact of profile shape on the high-injection barrier effects in advanced UHV/CVD SiGe HBTs,” in IEEE Electron Devices Meeting 1996 Tech. Dig., pp. 253-256, 1996.
[33] W. M. Webster, “On the variation of junction transistor current-amplification factor with emitter current,” Proc. IRE, vol. 42, pp. 914-920, Jun. 1954.
[34] E. S. Rittner, “Extension of the theory of the junction transistor,” Phys. Rev., vol. 94, no. 5, pp. 1161-1171, Jun. 1954.
[35] B. Mazhari, H. Morkoc, “Effect of Collector-Base Valance Band Discontinuity on Kirk Effect in Double Heterojunction Bipolar Transistor,” Appl. Phys. Lett., vol. 59, no. 17, pp. 2162-2164, Oct. 1991.
[36] J. W. Slotboom, G. Streutker, A. Pruijmboom, D. J. Gravesteijn, “Parasitic energy barriers in SiGe HBTs, ” IEEE Electron Device Lett., Vol. 12, pp. 486-488, Sept. 1991.
[37] M. W. Hsieh, Y. M. Hsin, K. H. Liang, Y. J. Chan, D. Tang, "RF Power Characteristics of SiGe HBTs at Cryogenic Temperatures," IEEE Trans. on Electron Devices, vol. 53, no. 6, pp. 1452-1458, June 2006.
[38] E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” RCA Rev., pp. 163-177, 1965.
[39] S. Tiwari, “A new effect at high currents in heterostructure bipolar transistors,” IEEE Electron Device Lett., Vol. 9, pp. 142-144, March 1988.
[40] S. Tiwari, “Analysis of the operation of GaAlAs/GaAs HBTs,” IEEE Trans. on Electron Devices, vol. 36, pp. 2105-2121, 1989.
[41] A. J. Joseph, J. D. Cressler, D. M. Richey, G. Niu, “Optimization of SiGe HBTs for operation at high current densities,” IEEE Trans. on Electron Devices, vol. 46, no. 7, pp. 1347-1354, July 1999.
[42] Q. Liang, J. D. Cressler, G. Niu, R. M. Malladi, K. Newton, D. L. Harame, “A physics-based high-injection transit-time model applied to barrier effects in SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 49, no. 10, pp. 1807-1813, Oct. 2002.
[43] M. Y. Frankel, D. Pavlidis, “Large-signal modeling and study of power saturation mechanisms in heterojunction bipolar transistors,” in IEEE MTT-S Int. Microwave Symp. 1991 Dig., Vol. 1, pp. 127-130, June 1991.
[44] G. B. Gao, H. Morkoc, M. C. Frank, “Heterojunction bipolar transistor design for power applications,” IEEE Trans. on Electron Devices, vol. 39, no. 9, pp. 1987-1997, Sept. 1992.
[45] M. W. Hsieh, K. H. Liang, C. Y. Lee, G. J. Chen, D. L. Tang, Y. J. Chan, “The high frequency and power performance of SiGe HBTs with SIC structure at cryogenic temperature,” IEEE MTT-S Int. Microwave Symp. 2005 Dig., pp. 2239-2249, June 2005.
[46] W. Kim, M. Chung, K. Lee, Y. Yang, S. Kang, B. Kim, “The effects of nonlinear CBC on the linearity of HBT,” Microwave Conference, 2000 Asia-Pacific, pp. 875-879, Dec. 2000.
[47] A. Hajimiri, T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuit, vol. 33, pp. 179-194, Feb. 1998.
[48] K. Washio, “SiGe HBT and BiCMOS technologies,” in IEEE Electron Devices Meeting Tech. 2003 Dig., pp. 113-116, 2003.
[49] E. Zhao, R. Krithivasan, A. K. Sutton, Z. Jin, J. D. Cressler, B. El-Kareh, S. Balster, H. Yasuda, “An Investigation of Low-Frequency noise in Complementary SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 53, no. 2, pp. 329-338, Feb. 2006.
[50] J. Kilmer, A. V. D. Ziel, and G. Bosman, “Presence of Mobility-Fluctuation 1/f Noise Identified in Silicon P+NP Transistor,” Solid-State Electronics, vol. 26, No. 1, pp. 71-74, 1983.
[51] L. Vempati, J. D. Cressler, J. A. Babcock, R. C. Jaeger, D. L. Harame, “Low-frequency noise in UHV/CVD epitaxial Si and SiGe bipolar transistor,” IEEE J. Solid-State Circuit, vol. 31, no. 10, pp. 1458-1467, Oct. 1996.
[52] B. V. Haaren, M. Regis, O. Llopis, L. Escotte, A. Gruhle, C. Mahner, R. Plana, J. Graffeuil, “Low-frequency noise properties of SiGe HBT’s and application to ultra-low phase-noise oscillators,” IEEE Trans. on Microwave Theory Tech., vol. 46, no. 5, pp. 647-652, May 1998.
[53] D. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. G. Freeman, J. D. Gillis, R. A. Groves, G. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna, A. M. Victor, K. M. Watson, C. S. Webster, P. J. Zampardi, “Current status and future trends of SiGe BiCMOS Technology,” IEEE Trans. on Electron Devices, vol. 48, no. 11, pp. 2575-2594, Nov. 2001.
[54] J. S. Rieh, B. Jagannathan, H. Chen, K. Schonenberg, D. Angell, A. Chinthakindi, J. Florkey, F. Golan, D. Greenberg, S. J. Jeng, M. Khater, F. Pagette, C. Schnabel, P. Smith, A. Stricker, K. Vaed, R. Volant, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “SiGe HBT’s with cut-off frequency of 350 GHz,” in IEDM 2002 Tech. Dig., pp. 771-774, 2002.
[55] B. Jagannathan, M. Khater, F. Pagette, J. S. S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, D. R. Greenberg, R. Groves, S. J. Jeng, J. Hohnson, E. Mengistu, K. T. Schonenberg, C. M. Schnabel, P. Smith, A. Stricker, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “Self aligned SiGe NPN transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, no. 2, pp. 258-260, Feb. 2002.
[56] X. Wang, D. Wang, C. Masse, and P. Bacon, “Low phase noise SiGe voltage-controlled oscillators for wireless applications,” J. Microwave, vol. 45, no. 2, pp. 84-99, Feb. 2002.
[57] S. P. O. Bruce, L. K. J. Vandamme, and A. Rydberg, “Measurement of Low-Frequency Base and Collector Current Noise and Coherence in SiGe Heterojunction Bipolar Transistors Using Transimpedance amplifiers,” IEEE Trans. on Electron Devices, vol. 46, no. 5, pp. 993-1000, May 1999.
[58] J. Tang, G. Niu, A. J. Joseph, and D. L. Harame, “Impact of Collector-Base Junction Traps and High Injection Barrier Effect on 1/f Noise,” in Proc. IEEE Bipolar/BiCMOS Circuits and Tech. Meeting 2003, pp. 175-178, 2003.
[59] T. G. M. Kleinoenning, “Low- Frequency Noise in Modern Bipolar Transistors: Impact of Intrinsic Transistor and Parasitic Series Resistances,” IEEE Trans. on Electron Devices, vol. 41, no. 11, pp. 1981-1991, Nov. 1994.
[60] G. S. Kousik, C. M. V. Vliet, G. Bosman, P. H. Handel, “Quantum 1/f noise associated with ionized impurity scattering and electron-phonon scattering in condensed matter,” Adv. Phys., vol. 34, no. 6, pp. 663-702, Jun 1986.
[61] D. L. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. Freeman, J. D. Gillis, R. A. Groves, F. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna, A. M. Victor, K. M.Watson, C. S.Webster, and P. J. Zampardi, “Current status and future trends of SiGe BiCMOS technology,” IEEE Trans. on Electron Devices, vol. 48, pp. 2575-2594, Nov. 2001.
[62] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[63] L. K. J. Vandamme, and G. Trefan, “Review of low-frequency noise in bipolar transistors over the last decade,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technol. Meeting 2001, pp. 68-73, 2001.
[64] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors, New York: J. Wiley & Sons, pp. 986-987, 1998.
[65] J. Tang, G. Niu, A. J. Joseph, and D. L. Harame, “Impact of collector-base junction traps on low-frequency noise in high breakdown voltage SiGe HBTs,” IEEE Trans. on Electron Devices, vol. 51, no. 9, pp. 1475-1482, Sept. 2004.
[66] H. Fukui, “The noise performance of microwave transistors,” IEEE Trans. on Electron Devices, vol. 13, pp. 329-341, Mar. 1966.
指導教授 詹益仁(Yi-jen Chan) 審核日期 2007-10-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明