以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:79 、訪客IP:52.15.68.97
姓名 沈珈萱(Jia-Xuan Shen) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 隱私差分應用於聯邦式水平分割主成分分析
(Federated horizontally partitioned principal component analysis with differential privacy)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 聯邦學習 (Federated Learning) 是一種基於多個本地客戶端的本地資料集的去 中心化機器學習演算法,無需明確交換資料樣本。一般來說,它涉及在本地資 料樣本上訓練本地模型,並透過產生所有客戶端共享的雲端模型在這些本地客 戶端之間交換參數。聯邦學習最初的目的是在異質資料集上進行訓練。主成分 分析(Principal Component Analysis)是高維度資料常用的降維工具 — 利用少數 且顯著的特徵來描述原始資料的一個統計方法。在本文中,我們將展示如何透 過隱私差分 (Differential Privacy) 的方法共享本地資料,以達優化主成分分析並 同時確保隱私。此外,我們也給了數值研究和一些理論分析。 摘要(英) Federated learning is a decentralized machine learning algorithm on local datasets at multiple local client devices without explicitly exchanging data samples. In general, it involves training models on local data samples and exchanging parameters between these local client devices by a global server. The aim of federated learning originally is training on heterogeneous datasets. Principal Component Analysis (PCA) is a com- monly used dimension reduction for high-dimensional data. In this article, we will demonstrate a PCA method in federated learning. We share local data while ensur- ing privacy through a differential privacy approach. Moreover, numerical studies and theories are provided. 關鍵字(中) ★ 高維度資料
★ 聯邦學習
★ 隱私差分
★ 主成份分析關鍵字(英) 論文目次 Contents
摘要 i
Abstract ii
誌謝 iii
1 介紹 1
2 文獻回顧 3
2.1 聯邦式主成份分析.............................. 3
2.1.1 聯邦學習............................... 3
2.1.2 主成份分析 ............................. 4
2.2 隱私差分應用於聯邦式主成份分析 .................... 5
3 方法
3.1 水平分割................................... 8
3.2 聯邦式水平分割主成分分析 ........................ 9
3.3 具有隱私差分的聯邦式水平分割主成分分析............... 10
3.4 隱私保證................................... 13
4 實驗
4.1 MNIST資料集................................ 16
4.2 胸部X射線資料集 ............................. 20
4.3 腦腫瘤資料集 ................................ 25
5 Conclusion 31參考文獻 References
Anne Hartebrodt, R. R. (2022). Federated horizontally partitioned principal component analysis for biomedical applications. Bioinformatics Advances, 2.
Chaudhuri, K., Sarwate, A. D., & Sinha, K. (2013). Near-optimal algorithms for differentially-private principal components.
Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. , 265–284.
Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4), 211–407.
Eftekhari, A., Hauser, R. A., & Grammenos, A. (2020). Moses: A streaming algorithm for linear dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(11), 2901–2911.
Grammenos, A., Mendoza-Smith, R., Crowcroft, J., & Mascolo, C. (2020). Federated prin- cipal component analysis.
Hartebrodt, A., Nasirigerdeh, R., Blumenthal, D. B., & Röttger, R. (2021). Federated prin- cipal component analysis for genome-wide association studies. , 1090-1095.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... Zhao, S. (2021). Advances and open problems in federated learning.
Li, L., Fan, Y., Tse, M., & Lin, K.-Y. (2020). A review of applications in federated learning. Computers Industrial Engineering, 149, 106854.
32
Ouadrhiri, A. E., & Abdelhadi, A. (2022). Differential privacy for deep and federated learn- ing: A survey. IEEE Access, 10, 22359-22380.
Rehůřek, R. (2011). Subspace tracking for latent semantic analysis. , 6611.
Rieke, N., Hancox, J., Li, W., et al. (2020). The future of digital health with federated learning. npj Digital Medicine, 3, 119.
Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216, 106775.
翁玄懷. (2020). 聯邦式主成份分析.指導教授 王紹宣 審核日期 2024-7-9 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare