參考文獻 |
[1] Arthur, D., Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.
In Soda, 7, 1027-1035.
[2] Calinski, T., Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics - Theory and Methods, 3, 1-27.
[3] Davies, D. L., Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227.
[4] Duan, L., Xu, L., Guo, F., Lee, J., Yan, B. (2007). A local-density based spatial
clustering algorithm with noise. Information Systems, 32, 978-986.
[5] El-Habil, A. M. (2012). An application on multinomial logistic regression model.
Pakistan Journal of Statistics and Operation Research, 8, 271-291.
[6] Huang, S. F., He, Y. H., Lu, Y. T. (2024). A clustering method based on feature
segmentation and fusion. Manuscript.
[7] Ing, C. K., Lai, T. L. (2011). A stepwise regression method and consistent model
selection for high-dimensional sparse linear models. Statistica Sinica, 21, 1473-1513.
[8] Fang, J., Wang, H., Zhu, H. (2018). Fast and accurate detection of complex imaging
genetics associations based on greedy projected distance correlation. IEEE Transactions on Medical Imaging, 37, 860-870.
[9] Gilpin, S., Qian, B., Davidson, I. (2013). Efficient hierarchical clustering of large high
dimensional datasets. In Proceedings of the 22nd ACM international conference on
Information and Knowledge Management, 1371-1380.
[10] Jing, L., Ng, M. K., Huang, J. Z. (2007). An entropy weighting k-means algorithm for
subspace clustering of high-dimensional sparse data. IEEE Transactions on Knowledge and Data Engineering, 19, 1026-1041.
[11] Jeon, Y., Yoo, J., Lee, J., Yoon, S. (2017). Nc-link: A new linkage method for efficient
hierarchical clustering of large-scale data. IEEE Access, 5, 5594-5608.
[12] Lin, C. T., Cheng, Y. J., Ing, C. K. (2023). Greedy variable selection for highdimensional Cox models. Statistica Sinica, 34.
[13] Liu, T., Lu, Y., Zhu, B., Zhao, H. (2023). Clustering high-dimensional data via
feature selection. Biometrics, 79, 940-950.
[14] Mansoori, E. G. (2014). GACH: A grid-based algorithm for hierarchical clustering of
high-dimensional data. Soft Computing, 18, 905-922.
[15] Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20,
53-65.
[16] Vijendra, S., Laxman, S. (2013). Subspace clustering of high-dimensional data: An
evolutionary approach. Applied Computational Intelligence and Soft Computing,
2013, 16-16.
[17] Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., ... and Goldenberg, A. (2014). Similarity network fusion for aggregating data types on a genomic
scale. Nature Methods, 11, 333.
[18] Wang, J., Zhu, C., Zhou, Y., Zhu, X., Wang, Y., Zhang, W. (2017). From partitionbased clustering to density-based clustering: Fast find clusters with diverse shapes
and densities in spatial databases. IEEE Access, 6, 1718-1729.
[19] Zhang, J., Li, Y., Dai, W. et al. (2024) Molecular classification reveals the sensitivity
of lung adenocarcinoma to radiotherapy and immunotherapy: Multi-omics clustering
based on similarity network fusion. Cancer Immunol Immunother, 73, 71. |