博碩士論文 90521035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.223.195.127
姓名 趙明達(Ming-Ta Chao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 二維半導體元件模擬的電流和電場分析
(Current-flow and Electric-field Analysis in 2-D Semiconductor Device Simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析★ 元件分割法及其在二維互補式金氧半導體元件之模擬
★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用
★ 量子力學等效電路模型之建立及其對元件模擬之探討★ 適用於二維及三維半導體元件模擬的可調變式元件切割法
★ 整合式的混階模擬器之開發及其在振盪電路上的應用★ 用時域模擬法探討S參數及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本篇論文一開始主要是討論在二維的半導體元件模擬器中開發出一套向量繪圖(vector-plot)的方法。此向量繪圖的技術能提供我們去了解半導體元件內部的電流及電場的分佈情形。透過所畫出的箭頭, 我們可以很清楚的表示出電流及電場的大小和方向。其次,我們將提出一些模型(model)去探討金氧半電晶體(MOSFET)內部的非理想情況, 在本論文內所討論的非理想狀況包含場相關的遷移率(field-dependent mobility),氧化層內的固定電荷(fixed charge in the oxide layer)。最後我們提出一個元素切割方法(element-cut method)去模擬BJT元件。元素切割方法中的二分切線(bisection lines)能夠幫助我們去計算BJT元件內部的電流分量。透過此元素切割方法,我們能解釋內部(internal) BJT的電流增益(current gain)大於合併(combined) BJT的電流增益之原因。
摘要(英) ABSTRACT
In this thesis, first we develop a vector-plot tool for 2-D device simulator. The vector-plot development technique can provide us to understand the distribution of the current flow and electric field inside the device. By the plot of the arrow, it is clear to show the magnitude and the direction of the current flow and electric field. Secondly, we will propose the model to discuss the nonideal cases of the MOSFET device. The nonideal cases are field-dependent mobility, fixed charge in the oxide layer in this thesis. Finally, we propose the element-cut method in the BJT device simulation. The bisection lines of the element-cut method can help us to calculate the current component inside the BJT device. We can explain that the current gain of the internal BJT is larger than the combined BJT by the element-cut method.
關鍵字(中) ★ 半導體元件模擬電流和電場分析 關鍵字(英) ★ current-flow and electric-field analysis
論文目次 Contents
1. Introduction 1
2. Vector-Plot Development For 2-D Device Simulation 3
2.1 2-D Equivalent Circuit Model……………………………………….3
2.2 Vector-Plot Development……………………………………………5
2.2.1 Coordinate Transform………………………………………………..7
2.2.2 Grid Plot for 2-D device……………………………………………….8
2.2.3 Current and Field Calculation in a Mesh………………………………9
2.2.4 Vector Scaling………..………………………………………………10
2.3 Simulation of the Vector-Plot in PN Diode………………………...12
2.3.1 Simulation example of the PN Diode………………………………...12
2.3.2 Discussion……………………………………………………………15
2.4 Simulation of the Vector-Plot in MOS Device…………………….18
2.4.1 Simulation example of the MOS Device……………………………..18
2.4.2 Discussion……………………………………………………………21
2.5 Summary………………………………………………………………...23
3. Current and Field Investigation in MOSFET 24
3.1 Impact of the MOSFET Electric Fields on Mobility…………….24
3.1.1 Effect of the Transverse and Longitudinal Electric Field………..24
3.1.2 Field-Dependent Mobility Model…………………………………25
3.1.3 Simulation Result and Discussion………….………………………..26
3.2 Nonideal Disorder of the oxide layer in the MOS device…..28
3.2.1 Effect of Fixed Charge Within Oxide Layer………………………...29
3.2.2 The 2-D Modeling of Fixed Charge within oxide layer……….…….34
3.2.3 Simulation Result and Discussion…………….……………………..36
4. Current-Flow Application in BJT Simulation 39
4.1 The Principle of the Parasitic BJT in 2-D BJT Simulation……….39
4.2 The Element-Cut Methods……………………………………………41
4.3 Simulation Result and Discussion……………………………………44
5. Conclusion 46
參考文獻 Reference
[1] H. C. Casey, Devices For Integrated Circuit, Chapter 7, John Wiley & Sons Inc., 1999.
[2] H. C. Casey, Devices For Integrated Circuit, Chapter 8, John Wiley & Sons Inc., 1999.
[3] E. S.Yang, Microelectronic Devices, Chapter 5, McGraw-Hill, 1988.
[4] E. S.Yang, Microelectronic Devices, Chapter 9, McGraw-Hill, 1988.
[5] E. S.Yang, Microelectronic Devices, Chapter 10, McGraw-Hill, 1988.
[6] E. S.Yang, Microelectronic Devices, Chapter 11, McGraw-Hill, 1988.
[7] S. Wolf, Silicon Processing for the VLSI Era (Volume 3-The submicron MOSFET), Chapter 5, Lattice Press, 1995
[8] C. L. Teng, “An equivalent circuit approach to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1997.
[9] Z. C. Liu, “Comparison of two potential variables in mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, National Central University, Taiwan, Republic of China, Jun. 1998.
[10] C. C. Chang, “Verification of 1D BJT numerical simulation and its application to mixed-level device and circuit simulation,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, Jun. 2001.
[11] C.-C. Chang, J.-F. Dai, and Y.-T. Tsai, ”Verification of 1D BJT numerical simulation and its application to mixed-level device and circuit simulation,” Int. J. of Numerical Modelling:Electronic Networks. Devices and Fields, pp. 81-94, 2003.
[12] S. J. Li, “An equivalent circuit of impact-ionization and its applications on semiconductor devices,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, Jun. 2002.
[13] S. Selberherr, Analysis and Simulation of Semiconductor Devices. New York: Springer, 1984.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2003-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明