參考文獻 |
Al-Dhabyani, W., Gomaa, M., Khaled, H., and Fahmy, A. (2020). Dataset of breast ultrasound images. Data in brief, 28:104863.
Chen, T.-L., Hsieh, D.-N., Hung, H., Tu, I.-P., Wu, P.-S., Wu, Y.-M., Chang, W.-H.,and Huang, S.-Y. (2014). γ-SUP: A clustering algorithm for cryo-electron microscopy images of asymmetric particles. Annals of Applied Statistics, 8:259–285.
Chung, S.-C., Lin, H.-H., Niu, P.-Y., Huang, S.-H., Tu, I.-P., and Chang, W.-H. (2020a). Pre-pro is a fast pre-processor for single-particle cryo-EM by enhancing 2D classification. Communications Biology, 3:1–12.
Chung, S.-C., Wang, S.-H., Niu, P.-Y., Huang, S.-Y., Chang, W.-H., and Tu, I.-P. (2020b). Two-stage dimension reduction for noisy high-dimensional images and application to
cryogenic electron microscopy. Annals of Mathematical Sciences and Applications, 5:283–316.
Huang, S.-H. and Huang, S.-Y. (2021). On the asymptotic normality and efficiency of
Kronecker envelope principal component analysis. Journal of Multivariate Analysis, accepted.
Hung, H., Wu, P.-S., Tu, I.-P., and Huang, S.-Y. (2012). On multilinear principal component analysis of order-two tensors. Biometrika, 99:569–583.
Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 29:295–327.
Konishi, S. and Kitagawa, G. (1996). Generalised information criteria in model selection. Biometrika, 83(4):875–890.
Li, B., Kim, K. M., and Altman, N. (2010). On dimension folding of matrix or array-valued statistical objects. Annals of Statistics, 38:1094–1121.
Marshall, A. W., Olkin, I., and Arnold, B. (2011). Inequalities: Theory of Majorization and Its Applications. Springer, New York, second edition.
Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica Sinica, 17:1617–1642.
Schott, J. R. (2014). Tests for Kronecker envelope models in multilinear principal components analysis. Biometrika, 101:978–984.
Tu, I. P., Huang, S. Y., and Hsieh, D. N. (2019). The generalized degrees of freedom of multilinear principal component analysis. Journal of Multivariate Analysis, 173:26–37.
Wang, S.-H., Huang, S.-H., and Huang, S.-Y. (2024). On asymptotic normality of mpca in high dimension. unpublished manuscript.
Yata, K. and Aoshima, M. (2009). PCA consistency for non-Gaussian data in high dimension, low sample size context. Communications in Statistics—Theory and Methods, 38:2634–2652.
Yata, K. and Aoshima, M. (2013). PCA consistency for the power spiked model in high-dimensional settings. Journal of Multivariate Analysis, 122:334–354.
Ye, J. (2004). Generalized low rank approximations of matrices. In Proceedings of the twenty-first international conference on Machine learning, page 112. |