博碩士論文 110523080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.143.241.152
姓名 唐士傑(Shi-Jie Tang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 5G 下行鏈路傳送之頻寬子集配置分割與組態研究
(Study on BWP Segmentation and Configuration in 5G Downlink Transmission)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 本論文研究5G無線通訊技術中的一個領域:下行鏈路(Downlink)的資源分配和管理,在5G通訊系統的下行鏈路中,有效地處理多個Bandwidth Parts(簡稱BWP)以滿足不同應用場景的需求,是本研究的主要目標。在5G下行鏈路中,BWPs通常根據不同的Numerology(也表示為μ)來定義,包括多樣的子載波間距和時間域配置。本論文提出了一種稱為BWP Segmentation的方法,這種方法透過結合基於不同Numerology值的BWPs,目的希望實現更加優化的資源分配和管理,特別是應用在超低延遲通訊(URLLC)、增強型移動寬頻通訊(eMBB)和大規模機器類通訊(MMTC)等關鍵5G應用場景下。
在本論文的研究中,有注意BWP切換過程中的延遲問題,並考慮了Inactivity Timer對下行鏈路資源管理策略的影響,提出了兩種不同的BWP切換演算法:一是基於閒置資源的Idle演算法,另一個是基於資源釋放指標的RRI演算法。這兩種演算法的結合BWP Segmentation,使得系統在5G下行鏈路中能夠更靈活地應對各種通訊需求,同時有效管理BWP切換所帶來的潛在延遲,並保持高效的資源利用率和低延遲性能。
本論文進行了一系列實驗和模擬,評估BWP Segmentation方法在不同到達率(Arrival Rate)情境下的表現。實驗結果展示了通過Idle和RRI演算法在5G下行鏈路中實現的延遲減少,也顯示了相對於傳統方法在功耗上的較好優勢。
綜合來看,本論文的研究成果對於解決5G下行鏈路中的資源分配和管理問題,以及滿足不同5G應用場景的需求,具有重要的實際意義。這些成果為建立更高效、可靠和多樣化的5G應用場景提供了幫助,並在節能和減少延遲方面提供了研究方向。
摘要(英) This paper investigates an aspect of 5G wireless communication technology: efficient resource allocation and management for the downlink channel. The primary objective is to handle multiple Bandwidth Parts (BWP) effectively to meet the diverse application requirements within the 5G communication system′s downlink channel. In the 5G downlink, BWPs are typically defined by varying Numerologies (denoted by μ), including various subcarrier spacings and time domain configurations. This study introduces a BWP Segmentation approach that aims for optimized resource allocation by combining BWPs based on different Numerology values, particularly for critical 5G applications like Ultra-Reliable Low-Latency Communications (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine Type Communications (MMTC).
The research pays special attention to the latency involved in BWP switching and examines the impact of the Inactivity Timer on downlink resource management strategies. Two BWP switching algorithms are proposed: one based on idle resources and another based on resource release indicators (RRI). The combination of these algorithms allows for flexible response to communication needs in the 5G downlink and efficient management of the potential latency introduced by BWP switching while maintaining high resource utilization and low latency.
Experiments and simulations conducted assess the performance of the BWP Segmentation method under different arrival rate scenarios. Results demonstrate latency reduction achieved through Idle and RRI algorithms and significant power-saving advantages over traditional methods.

Overall, the outcomes of this research are of practical importance for addressing resource allocation and management in the 5G downlink and for meeting the demands of various 5G applications. These findings lay a solid foundation for establishing efficient, reliable, and diversified 5G application scenarios, offering research directions for energy savings and latency reduction.
關鍵字(中) ★ 5G下行鏈路排程
★ 頻寬子集切換
★ 頻寬子集
關鍵字(英) ★ 5G Downlink Scheduling
★ Bandwidth Part Switching
★ Bandwidth Part
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 章節概要 5
第二章 相關研究 6
2.1 5G BWP與三大場景關係介紹 6
2.2 Frame Structure 7
2.2.1 Numerologies 7
2.2.2 頻域資源 10
2.3 Bandwidth Part 基本介紹 12
2.3.1 Bandwidth Part概念 12
2.3.2 BWP類型 14
2.3.3 BWP 配置情境和切換 16
2.3.4 BWP 概念和配置總結 18
2.4 Downlink Control Information (DCI) 20
2.5 5G Intra-Band Carrier Aggregation 22
2.6 相關文獻 25
第三章 研究方法 32
3.1 系統架構 33
3.2 系統流程 35
3.3 系統參數 37
3.4 演算法 38
3.4.1 BWP Segmentation 38
3.4.2 Bandwidth Part Switching Procedure 43
3.4.3 Adaptive BWP Selection – Idle PRB 45
3.4.4 Adaptive BWP Selection – RRI. 46
3.4.5 Simulate UE Stay Time on BWP 50
第四章 模擬結果與分析 52
4.1 模擬環境 52
4.2 模擬參數 55
4.3 模擬結果Case1:三個相同20Mhz的BWP 57
4.3.1 Case1-1 57
4.3.2 Case1-2 66
4.3.3 Case1-3 75
4.3.4 Case1-4 82
4.4 Case1結論 85
4.5 模擬結果Case2:20Mhz的BWP和 80Mhz 的BWP 87
4.6 Case2結論 94
第五章 結論 95
參考文獻 96
參考文獻 [1] ITU. (2015). IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond. In: M Series.
[2] ETSI. (2022). Study on scenarios and requirements for next generation access technologies In 3GPP TR 38.913 version 17.0.0 Release 17.
[3] Y. Kim et al., "New Radio (NR) and its Evolution toward 5G-Advanced," in IEEE Wireless Communications, vol. 26, no. 3, pp. 2-7, June 2019,
[4] ETSI. (2018). 5G;Study on New Radio (NR) access technology. In 3GPP TR 38.912 version 15.0.0 Release 15.
[5] ETSI. (2020). 5G; NR;Physical channels and modulation. In 3GPP TS 38.211 version 16.2.0 Release 16.
[6] 5G | ShareTechnote. 5G Frame structure. https://www.sharetechnote.com/html/5G/5G_FrameStructure.html
[7] ETSI. (2022). 5G; NR;User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone. In 3GPP TS 38.101-1 version 17.5.0 Release 17.
[8] MEDIATEK. (2018). Bandwidth Part Adaptation. In 5G NR User Experience & Power Consumption Enhancements.
[9] 5G | ShareTechnote. 5G/NR - Carrier Bandwith Part. Retrieved 2024 from https://www.sharetechnote.com/html/5G/5G_CarrrierBandwidthPart.html
[10] Arvind Padmanabhan. Devopedia. 2021. "5G NR Bandwidth Part." Version 5, March 8. Accessed 2023-11-12. https://devopedia.org/5g-nr-bandwidth-part. Retrieved 2024/03/05 from https://devopedia.org/5g-nr-bandwidth-part#cite-as
[11] How LTE Stuff Works? Retrieved 2024/03/05 from https://howltestuffworks.blogspot.com/
[12] TELCOMA. Carrier Aggregation and its Challenges in 5G NR. https://telcomaglobal.com/p/carrier-aggregation-and-its-challenges-in-5g-nr
[13] RF Wireless World. 5G NR Carrier Aggregation (CA) Basics | Carrier Aggregation Frequency Bands. https://www.rfwireless-world.com/5G/5G-NR-Carrier-Aggregation-basics.html.
[14] Pawar, U., Chilukuri, A., & A, A. F. (2021). Traffic Aware Optimal Bandwidth Segmentation for Low Latency Communication in 5G 2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS),
[15] Ramaswamy, V., Correia, J. T., & Swain-Walsh, D. (2021). Analytical Evaluation of Bandwidth Part Adaptation in 5G New Radio 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
[16] Abinader, F., Marcano, A., Schober, K., Nurminen, R., Henttonen, T., Onozawa, H., & Virtej, E. (2019). Impact of Bandwidth Part (BWP) Switching on 5G NR System Performance 2019 IEEE 2nd 5G World Forum (5GWF),
[17] Haghshenas, M., & Magarini, M. (2022). NR-U and Wi-Fi Coexistence Enhancement Exploiting Multiple Bandwidth Parts Assignment 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC),
[18] 劉家豪(2020)。URLLC下行鏈路傳送之頻寬子集配置研究。﹝碩士論文。國立中央大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/8h9p4c。
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2024-4-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明