參考文獻 |
Ait-Sahalia, Y., Mykland, P. A. & Zhang, L. (2005). How often to sample a continuous-time
process in the presence of market microstructure noise. The review of financial studies,
18(2), 351–416.
Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001). The distribution of
realized stock return volatility. Journal of financial economics, 61(1), 43–76.
Berger, R. L. & Casella, G. (2001). Statistical inference. Duxbury.
Billingsley, P. (1961). Statistical methods in markov chains. The annals of mathematical
statistics, 12–40.
Chen, C. W., Gerlach, R. & Lin, E. M. (2008). Volatility forecasting using threshold heteroskedastic
models of the intra-day range. Computational Statistics & Data Analysis,
52(6), 2990–3010.
Cheung, Y.-W. (2007). An empirical model of daily highs and lows. International Journal
of Finance & Economics, 12(1), 1–20.
Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: the conditional
autoregressive range (carr) model. Journal of Money, Credit and Banking, 561–582.
Chou, R. Y. (2006). Modeling the asymmetry of stock movements using price ranges. In
Econometric analysis of financial and economic time series (pp. 231–257). Emerald
Group Publishing Limited.
Chou, R. Y. & Liu, N. (2010). The economic value of volatility timing using a range-based
volatility model. Journal of Economic Dynamics and Control, 34(11), 2288–2301.
Emura, T., Lai, C.-C. & Sun, L.-H. (2023). Change point estimation under a copula-based
markov chain model for binomial time series. Econometrics and Statistics, 28, 120–
137.
Garman, M. B. & Klass, M. J. (1980). On the estimation of security price volatilities from
historical data. Journal of business, 67–78.
Gilbert, J. C. & Lemaréchal, C. (1989). Some numerical experiments with variable-storage
quasi-newton algorithms. Mathematical programming, 45(1), 407–435.
Helfrick, A. D. & Cooper, W. D. (1996). Modern electronic instrumentation and measurement
techniques prentice-hall of india pvt. Ltd., New Delhi.
Itô, K. (1944). 109. stochastic integral. Proceedings of the Imperial Academy, 20(8), 519–
524.
Karatzas, I. & Shreve, S. (2014). Brownian motion and stochastic calculus (Vol. 113).
springer.
Lin, L.-C. & Sun, L.-H. (2019). Modeling financial interval time series. Plos one, 14(2),
e0211709.
Maruddani, D. & Trimono. (2018). Modeling stock prices in a portfolio using multidimensional
geometric brownian motion. In Journal of physics: Conference series (Vol.
1025, p. 012122).
Nagaraj, N. (1990). Two-sided tests for change in level for correlated data. Statistical Papers,
31, 181–194.
Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
Peng, C. & Simon, C. (2024). Financial modeling with geometric brownian motion. Open
Journal of Business and Management, 12(2), 1240–1250.
Perreault, L., Bernier, J., Bobée, B. & Parent, E. (2000). Bayesian change-point analysis
in hydrometeorological time series. part 1. the normal model revisited. Journal of Hydrology, 235(3-4), 221–241.
Perry, M. B. & Pignatiello Jr, J. J. (2005). Estimation of the change point of the process fraction
nonconforming in spc applications. International Journal of Reliability, Quality
and Safety Engineering, 12(02), 95–110.
Pignatiello Jr, J. J. & Samuel, T. R. (2001). Identifying the time of a step-change in the
process fraction nonconforming. Quality Engineering, 13(3), 357–365.
Reddy, K. & Clinton, V. (2016). Simulating stock prices using geometric brownian motion:
Evidence from australian companies. Australasian Accounting, Business and Finance
Journal, 10(3), 23–47.
Santner, T. J., Williams, B. J., Notz, W. I. & Williams, B. J. (2003). The design and analysis
of computer experiments (Vol. 1). Springer.
Shao, X. & Zhang, X. (2010). Testing for change points in time series. Journal of the
American Statistical Association, 105(491), 1228–1240.
Soltanifar, M. & Knight, K. (n.d.). A collection of exercises in advanced mathematical
statistics: The solution manual of all odd-numbered exercises from” mathematical
statistics”(2000). Chapman & Hall/CRC Press LLC. |