博碩士論文 111523023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:133 、訪客IP:3.149.251.26
姓名 李俊毅(Chun-Yi Lee)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 應用於非地面網路之窄頻物聯網上行鏈路同步技術
(Uplink Synchronization Technique for Narrowband Internet-of-Things in Nonterrestrial Networks)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 窄頻物聯網(narrowband Internet of Things, NB-IoT)是第三代合作夥伴計畫(the third generation partnership project, 3GPP)所制定一個新的物理層,目的是支持大量物聯網用戶設備 (user equipment, UE)應用在大規模機器類型通訊 (massive machine-type communication, mMTC)。為了進一步擴展覆蓋範圍和提高UE連接數量,非地面網路(nonterrestrial networks, NTN)中的衛星通訊成為最有潛力的解決方法。然而,NB-IoT系統最初是為地面網路(terrestrial networks, TN)設計的,當引入至NTN時,現有的運作方式需要進行一些修改,使其能夠容忍衛星通訊帶來的高頻率偏移及傳播延遲,並確保NTN與TN之間的兼容性。其中一個挑戰是隨機接入(random access, RA)程序,RA程序涉及前導碼檢測和上行鏈路同步,由於頻率偏移及傳播延遲較大,傳統為TN設計的方法無法提供準確的檢測及估計。因此,本文設計一個無需全球導航衛星系統(global navigation satellite system, GNSS)的系統來進行RA,透過在衛星上的窄頻物理層隨機接入通道(narrowband physical random access channel, NPRACH)接收機進行都卜勒頻率的預補償與後補償以克服嚴重的都卜勒效應,而定時提前(time advance, TA)與隨機接入機會(random access opportunity, RAO)推延可以克服訊號高傳播延遲。NPRACH前導碼(preamble)採用基於奈曼-皮爾森準則(Neyman-Pearson criterion)來檢測符元(symbol)平均功率,同時提出可以估計大範圍載波頻率偏移(carrier frequency offset, CFO)與時序誤差(timing error, TE)的方法。最後在模擬中分析漏檢機率(miss detection probability)與估計的均方誤差(mean-square error, MSE),結果表明上述提及的方法能夠應對衛星帶來的通道損害。
摘要(英) Narrowband Internet of Things (NB-IoT) is a new physical layer standard established by the third generation partnership project (3GPP). It is designed to support a large number of Internet of Things (IoT) user equipment (UE) in massive machine-type communication (mMTC) scenarios. To further extend coverage and massive connectivity, satellite communication within nonterrestrial networks (NTN) has emerged as a promising solution. However, the NB-IoT system was initially designed for terrestrial networks (TN), and when introduced to NTN, the existing operations need to be modified to tolerate the high frequency offset and propagation delay introduced by satellite communications, ensuring compatibility between NTN and TN.
One of the challenges is the random access (RA) procedure, which involves preamble detection and uplink synchronization. Due to larger frequency offsets and propagation delays, conventional methods designed for TN cannot provide accurate detection and estimation. Therefore, this thesis designs a global navigation satellite system (GNSS)-free system for RA, overcoming severe Doppler effects through pre-compensation and post-compensation of Doppler frequency at the receiver of the narrowband physical random access channel (NPRACH) on the satellite. Problems caused by long propagation delays are also addressed. Furthermore. This thesis employs symbol average power detection based on the Neyman-Pearson criterion and proposes a method to estimate a wide range of carrier frequency offset (CFO) and timing error (TE). Finally, simulations are conducted to verify the miss detection probability and mean-square error (MSE) of the estimation, showing that the proposed method can handle the channel impairments introduced in the NTNs.
關鍵字(中) ★ 窄頻物聯網
★ 隨機存取
★ 窄頻物理隨機接入通道
★ 檢測
★ 估計
★ 非地面網路
關鍵字(英) ★ narrowband Internet-of-Things
★ random access
★ narrowband physical random access channel
★ detection
★ estimation
★ nonterrestrial network
論文目次 摘要 i
Abstract ii
圖目錄 v
表目錄 vii
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 2
第二章 窄頻物聯網介紹 5
2.1 部署方式 5
2.2 隨機存取程序 5
2.3 窄頻物理層隨機接入通道前導碼 6
第三章 非地面網路通訊的隨機接入程序改進 11
3.1 衛星配置 11
3.2 低軌道衛星的都卜勒偏移計算 14
3.3 都卜勒預補償與後補償技術 18
3.4 衛星定時提前與隨機接入機會延遲 21
第四章 NB-IoT 上行鏈路檢測與同步技術 23
4.1 NPRACH 系統模型 23
4.2 NPRACH 前導檢測 26
4.3 CFO 估計 30
4.4 TE 估計 34
4.5 動態調整檢測與估計範圍 38
第五章 模擬結果與討論 40
5.1 AWGN 通道下模擬結果 41
5.1.1 AWGN 通道下 NPRACH 前導碼檢測 41
5.1.2 AWGN 通道下 CFO 估計與 TE 估計 45
5.2 陰影萊斯衰落通道下模擬結果 48
5.2.1 陰影萊斯衰落通道 48
5.2.2 陰影萊斯衰落通道下 NPRACH 前導碼檢測 52
5.2.3 陰影萊斯通道下 CFO 估計與 TE 估計 54
第六章 結論 59
參考文獻 60
參考文獻 [1] O. Kodheli, N. Maturo, S. Chatzinotas, S. Andrenacci, and F. Zimmer, “On the random access procedure of NB-IoT non-terrestrial networks,” in 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2020, pp. 1–8.
[2] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio (NR) to Support Non-terrestrial Networks (NTN) (release 15),” 3GPP, Rep. TR 38.811, v0.1.0, Jun. 2017.
[3] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Solutions for NR to Support Non-terrestrial Networks (NTN) (release 16),”
3GPP, Rep. TR 38.821, v16.0.0, Dec. 2019.
[4] “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio (NR) to Support Non-terrestrial Networks (NTN) (release 15),” 3GPP, Rep. TR 38.811, v15.1.0, Jun. 2019.
[5] “Solutions for NR to Support Non-Terrestrial Networks (NTN), document RP-193144,” 3GPP TSG RAN meeting #86, 3GPP Std., Dec. 2019.
[6] M. Kanj, V. Savaux, and M. Le Guen, “A tutorial on NB-IoT physical layer design,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2408–2446, 4th Quart., 2020.
[7] A. Chakrapani, “NB-IoT uplink receiver design and performance study,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2469–2482, Mar. 2020.
[8] W. S. Jeon, S. B. Seo, and D. G. Jeong, “Effective frequency hopping pattern for ToA estimation in NB-IoT random access,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 10 150–10 154, Oct. 2018.
[9] R. Harwahyu, R.-G. Cheng, C.-H. Wei, and R. F. Sari, “Optimization of random access channel in NB-IoT,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 391–402, Feb. 2018.
[10] X. Lin, A. Adhikary, and Y.-P. Eric Wang, “Random access preamble design and detection for 3GPP narrowband IoT systems,” IEEE Wireless Communications Letters, vol. 5, no. 6, pp. 640–643, Dec. 2016.
[11] C. Liu, G. Ma, R. He, B. Ai, R. Chen, H. Zhang, and B. Liu, “An improved NPRACH preamble frequency hopping pattern for reducing preamble collision,” in 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), 2023, pp. 1–5.
[12] H. Chougrani, S. Kisseleff, and S. Chatzinotas, “Efficient preamble detection and time-of-arrival estimation for single-tone frequency hopping random access in NB-IoT,” IEEE Internet of Things Journal, vol. 8, no. 9, pp. 7437–7449, May 2021.
[13] S. Li, T. Xiang, D. Huang, L. Han, Q. Wu, and D. Kong, “An efficient random access reception algorithm for ToA estimation in NB-IoT,” Electronics, vol. 12, no. 12, p.2636, Jun. 2023.
[14] F. A. Aoudia, J. Hoydis, S. Cammerer, M. Van Keirsbilck, and A. Keller, “Deep learning-based synchronization for uplink NB-IoT,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2022, pp. 1478–1483.
[15] R. Li, J. Xue, J. Sun, and S. Chatzinotas, “A deep learning approach for universal NPRACH detection with inter-cell interference,” IEEE Transactions on Communications, vol. 72, no. 3, pp. 1401–1413, Mar. 2024.
[16] J.-K. Hwang, C.-F. Li, and C. Ma, “Efficient detection and synchronization of superimposed NB-IoT NPRACH preambles,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 1173–1182, Feb. 2019.
[17] O. Kodheli, A. Astro, J. Querol, M. Gholamian, S. Kumar, N. Maturo, and S. Chatzinotas, “Random access procedure over non-terrestrial networks: From theory to practice,” IEEE Access, vol. 9, pp. 109 130–109 143, 2021.
[18] X. Liu and D. Gokhale, “GNSS-independent acquisition for NTN NB-IoT,” in 39th International Communications Satellite Systems Conference (ICSSC 2022), vol. 2022, 2022, pp. 164–168.
[19] H. Chougrani, S. Kisseleff, W. A. Martins, and S. Chatzinotas, “NB-IoT random access for nonterrestrial networks: Preamble detection and uplink synchronization,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14 913–14 927, Aug. 2022.
[20] Y. Xu, J. Jiang, D. He, and W. Zhang, “A NB-IoT Random access scheme based on change point detection in NTNs,” IEEE Open Journal of the Communications Society, vol. 4, pp. 2176–2185, 2023.
[21] J.-C. Lin, “NB-IoT physical random access channels (NPRACHs) with intercarrier interference (ICI) reduction,” IEEE Internet of Things Journal, vol. 11, no. 3, pp. 5427–5438, Feb. 2024.
[22] “Random Access Design, document R1-156011,” 3GPP TSG-RAN1 #82bis, Ericsson, Stockholm, Sweden, 3GPP Std., Oct. 2015.
[23] “NB-IoT—Random Access Design, document R1-157424,” 3GPP TSG-RAN1 #83, Ericsson, Stockholm, Sweden, 3GPP Std., Nov. 2015.
[24] “NB-IoT—Design Considerations for Single Tone Frequency Hopped NB-PRACH, document R1-160093,” 3GPP TSG-RAN1 AH-NB-IoT, Ericsson, Stockholm, Swe-
den, 3GPP Std., Jan. 2016.
[25] “NB-IoT—Single Tone Frequency Hopping NB-PRACH Design, document R1-160275,” 3GPP TSG-RAN1 #84, Ericsson, Stockholm, Sweden, 3GPP Std., Fab. 2016.
[26] “3rd Generation Partnership Project; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) (release 17),” 3GPP, Rep. TR 36.211, v17.4.0, Sept. 2023.
[27] “Beam Size Computation and Alternative Satellite Specifications, document R1-1907481,” 3GPP TSG WG1 Meeting #97, 3GPP Std., May 2019.
[28] A. Guidotti, A. Vanelli-Coralli, A. Mengali, and S. Cioni, “Non-terrestrial networks: Link budget analysis,” in ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1–7.
[29] A. Abdi, W. Lau, M.-S. Alouini, and M. Kaveh, “A new simple model for land mobile satellite channels: First- and second-order statistics,” IEEE Transactions on Wireless Communications, vol. 2, no. 3, pp. 519–528, 2003.
[30] J.-C. Lin, “A simulator of spatially correlated complex-valued nakagami fading channels,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, pp. 1–6.
[31] J.-C. Lin and H. V. Poor, “A systematic approach to deriving the covariance matrix of correlated nakagami-m fading channels,” IEEE Transactions on Vehicular Technology, vol. 69, no. 2, pp. 1612–1625, 2020.
[32] B. Vucetic and J. Du, “Channel modeling and simulation in satellite mobile communication systems,” IEEE Journal on Selected Areas in Communications, vol. 10, no. 8, pp. 1209–1218, 1992.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明