博碩士論文 110553018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:13.59.82.60
姓名 張耿豪(Keng-Hao Chang)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 應用於X頻段通訊雷達收發系統之放大器設計
(Amplifier Design for X-Band Communication Radar Transceiver Syatem)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本學位論文提出使用於X頻段(9~10 GHz)通訊雷達系統的收發機放大器設計。基於近年物聯網的概念越發普及,多數系統皆需具備通訊功能,因此收發系統的耗電量也越發被重視。有鑒於此,設計方面著重於在提高增益的同時也須降低晶片功耗。

本論文研發第一個晶片為用於X頻段發射機的功率放大器設計,此顆晶片為使用穩懋0.15 μm GaN製程所製作的功率放大器,電路採用兩共源極電路串聯的架構增加其增益,其小訊號增益為25 dB,飽和輸出功率超過2 W,中心頻的效率為28%,而晶片面積為2.35×1.75 mm2。

本論文研發第二個晶片為用於X頻段接收機的低雜訊放大器設計,此顆晶片為使用穩懋0.15 μm GaAs製程所製作的低雜訊放大器,電路架構採用電流再利用(Current-Reused),以架構降低其耗電量,電路最大增益為20 dB,雜訊最小值為1.35 dB,量測功耗為24 mW,晶片面積為1.11×1.1 mm2。
摘要(英) Novel designs of transmitting and receiving amplifiers applied for X-band (9~10GHz) radar communications are proposed, investigated, implemented, measured, tested and verified in this thesis. With rapidly growing applications of the Internet of Things (IoT) concept, most applications are equipped with communication functionality, thus emphasizing the importance of power consumption reduction in transceiver systems. Accordingly, the designs proposed in this thesis inevitably focus on increase of power gain with reduction of overall power consumption of a single chip.

The first chip designed in this thesis is a power amplifier working in a X-band transmitter. This chip is fabricated using a 0.15 μm GaN process from WIN. The circuit employs a cascade configuration to increase its gain. Its small-signal gain is up to 25 dB, with a saturation output power exceeding 2 W, and the best efficiency is 30%. The chip occupies an area only of 2.35×1.75 mm².

The second chip is a low-noise amplifier designed for X-band receivers. This chip is fabricated using a 0.15 μm GaAs process from WIN. The circuit architecture adopts a Current-Reused structure to reduce power consumption. The circuit gain is 20 dB, with a minimum noise figure of 1.5 dB. The measured power consumption is 24 mW, and the chip occupies an area only of 1.11×1.106 mm²
關鍵字(中) ★ 放大器
★ 低功耗
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
表目錄 IX
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節描述 2
第二章 0.15umGaAs製程之X頻段電流再利用放大器 3
2-1 低雜訊放大器介紹 3
2-2 低雜訊放大器重要參數 3
2-2-1 散射參數 4
2-2-2 穩定度 6
2-2-3 雜訊指數 8
2-2-4 等校雜訊溫度 9
2-2-5 線性度 12
2-3 低雜訊放大器架構 14
2-3-1 串接式放大器 14
2-3-2 回授式放大器 15
2-3-3 源極退化電感放大器 16
2-3-4 疊接式放大器 16
2-3-5 電流再利用放大器 17
2-4 9-10GHz低功耗低雜訊放大器 18
2-4-1 電路架構及設計原理 18
2-4-2 模擬與量測結果 23
2-4-3 結果與討論 27
第三章 0.15umGaN製程之X頻段多級功率放大器 28
3-1 功率放大器簡介 28
3-2 功率放大器重要參數 29
3-2-1 輸出功率 29
3-2-2 線性度 30
3-2-3 效率 31
3-3 放大器分類 32
3-3-1 線性放大器 33
3-3-2 非線性放大器 37
3-4 負載線定理及負載牽引方法 38
3-4-1 負載線定理 39
3-4-2 負載牽引方法 41
3-5 9-10GHz兩級串接式放大器 43
3-5-1 電路架構及原理 43
3-5-2 電路模擬與量測結果 47
3-5-3 結果與討論 52
第四章 結論 53
4-1 結論 53
4-2 未來期許及研究方向 53
References 54
參考文獻 [1]X. Chen, C. -H. Chen, R. Lee, D. C. Chen and D. Y. Wu, “Direct deembedding of noise factors for on-wafer noise measurement”, IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 916-922, March 2017.
[2]W. C. Huang, C. Chiong, and H. Wang, “A fully-integrated S-band differential LNA in 0.15-μm GaAs pHEMT for radio astronomical receiver”, in Proc. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 1-3, Melbourne, VIC, 2018.
[3]R. Mancini, and B. Carter, “Op Amps for Everyone Third Edition”, Texas Instruments, Chapter 10 Op Amp Noise Theory and Applications, 2009.
[4]H. Nyquist, “Thermal agitation of electric charge in conductors”, Phys. Rev., vol. 32, no. 1, pp. 110–113, July 1928.
[5]X. Ding, G. Niu, A. Zhang, W. Cai, and K. Imura, “Experimental extraction of thermal noise γ factors in a 14-nm RF FinFET technology”, in Proc. 2021 IEEE 20th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), San Diego, CA, USA, 2021, pp. 25-27.
[6]G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice Hall Upper Saddle River, New Jersey, 1997.
[7]A. H. Aljuhani, T. Kanar, and G. M. Rebeiz, “A packaged single-ended K-band SiGe LNA with 2.14 dB mean noise figure”, in Proc. IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), CA, pp. 198 201, San Diego, 2018.
[8]S. Rasidah, A. Rasmi, M. H. Siti Maisurah, A. I. A. Rahim, and M. R. Yahya, “15 GHz medium power amplifier design for Ku- band applications”, in Proc. IEEE Regional Symposium on Micro and Nano Electronics, pp. 108-111, Kota Kinabalu, 2011.
[9]M. Parvizi, K. Allidina, and M. N. El-Gamal, “A Sub-mW, ultra-low-voltage, wideband low-noise amplifier design technique”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1111-1122, June 2015.
[10]Y. J. Lin, S. S. H. Hsu, J. D. Jin, and C. Y. Chan, “A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique”, IEEE Microwave and Wireless Components Letters, vol. 17, no. 3, pp. 232-234, March 2007.
[11]A. Salimath, P. Karamcheti, and A. Halder, “A 1 V , sub-mW CMOS LNA for low-power 1 GHz wide-band wireless applications”, in Proc.2014 27th Int. Conf. on VLSI DESIGN and 2014 13th Int. Conf. on Embedded Systems, Mumbai, India, 2014, pp. 460-465 .
[12]Ç.Yağbasan, and A.Aktuğ, “Robust X-band GaN LNA with integrated active limiter”, in Proc. 2018 13th European Microwave Integrated Circuits Conference (EuMIC), pp. 1205-1208, 2018.
[13]P. Schuh, and R. Reber, “Robust X-Band low noise limiting amplifiers”, in Proc. IEEE Int. Microwave Symp. Dig., Seatle, USA, June. 2013, pp. 1–4.
[14]T. Kanar, and G. M. Rebeiz, “X- and K-band SiGe HBT LNAs with 1.2- and 2.2-dB mean noise figures”, IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2381–2389, Oct. 2014.
[15]C. Wang, K. Y. Chen, Y. L. Lee and C. H. Li, “A X-/Ku-band QFN-packaged GaAs LNA supporting dual-polarization signal reception”, in Proc.2019 IEEE Asia-Pacific Microwave Conference (APMC), pp. 1521-1523, 2019.
[16]邱煥凱、林貴城編著,ADS應用於射頻功率放大器設計與模擬,國立清華大學出版社,台灣,新竹,05,2014,第47-50頁。
[17]C. M. Li, M. T. Li, K. C. He, and J. H. Tarng, “A low-power selfforward-body-bias CMOS LNA for 3-6.5-GHZ UWB receivers”, IEEE Microw. Wireless Compon.Lett., vol. 20, no 2, pp. 100-102, Feb. 2010.
[18]S. C. Crpps, “RF Power Amplifer for Wireless Communications”, Artech House, Mar. 1999.
[19]S. Pandey, and J. Singh, “A 0.6 V low-power and high-gain ultrawideband low-noise amplifier with forward-body-bias technique for low voltage operations”, IET Microwaves Antennas Propagation, vol. 9, no. 8, pp728-734, 2015.
[20]M. Onur , A Karakuzulu, A Gündel, F Kocer and O A Civi, “ Design and implementation of an encapsulated GaN X-band power amplifier family”, in Proc.2018 13th European Microwave Integrated Circuits Conference(EuMC), pp. 90-92, 2018.
[21]S. Pavlidis, A. Ulusoy and J. Papapolymerou, “A 5.4W X-band gallium nitride (GaN) power amplifier in an encapsulated organic package”, in Proc.2015 European Microwave Conference (EuMC), pp. 789-792, 2015.
[22]S. Harsha, G. Vardhan, D. Pathak, M. Mendhe and A. Dutta, “15W hybrid GaN power amplifier through microstrip radial stub 4W GaN MMIC for X-band radar applications”, in Proc. 2020 IEEE VLSI Device, Circuit and System Conference (VLSI-DCS), pp. 474-479, 2020.
[23]A. Dani, M. Coffey and Z. Popovi´-c, “4W X-band high efficiency MMIC PA with output harmonic injection”, in Proc.2014 9th European Microwave Integrated Circuit Conference, pp. 389-392, 2014.
指導教授 林嘉慶(Jia-Cing Lin) 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明