摘要(英) |
In recent years, with the rapid development and demand growth of high-end IC chips such as generative AI, graphics GPUs, 5G networking, high-performance computing (HPC), and autonomous driving vehicles, the importance of advanced packaging and ABF (Ajinomoto Build-up Film) substrates has become increasingly pronounced. As the functionalities of high-end IC chips continue to advance, the unique properties and advantages of ABF substrates have become evident, securing a dominant position in the field of high-end IC chip products. Given the significant market demand potential for new applications in high-speed computing and generative AI, the ABF substrate market is presented with unprecedented opportunities for rapid growth, playing a crucial role within the overall advanced semiconductor chip industry chain.
This thesis employs the Structure-Conduct-Performance (S-C-P) analytical framework of industrial economics theory to examine the fundamental conditions, government policies, market structure, firm behavior, and industry performance of the global ABF substrate industry, analyzing its current state and future trends.
The research findings reveal that the market structure of the ABF substrate industry is characterized by a high degree of seller concentration, primarily centered in Taiwan, Japan, and South Korea, indicating a highly oligopolistic market dominated by a few leading manufacturers. Regarding barriers to entry, the industry is recognized for its capital and technology-intensive nature, embodying significant economies of scale barriers, posing substantial challenges for new entrants. In terms of product differentiation, ABF substrates exhibit considerable vertical differentiation, leading to a more concentrated market structure with notable product differences among manufacturers.
In terms of firm behavior, the pricing strategies of substrate manufacturers are largely based on their overall evaluation by end clients and the general state of the market economy. In a supply-constrained market scenario, manufacturers have considerable flexibility and leeway in their pricing strategies. Regarding competitive strategies, to stand out in the global substrate competition, manufacturers must continuously optimize and innovate across five core competitive indicators: quality, cost, delivery, technology, and service (QCDTS), thereby meeting the high standards of end clients and securing a dominant position in the realm of high-end products. In innovation and R&D, focusing on high-end ABF substrates for high-speed computing applications, innovative advanced packaging technologies such as Chiplet heterogeneous integration and TSMC′s CoWoS 3D IC stacking are the trends of the future, driving ABF substrates towards larger areas, higher layer counts, and higher circuit densities, increasing the overall manufacturing difficulty and threshold. Regarding conglomeratization and alliances, vertical integration and diversification investments are pursued, along with alliances with key customers, to achieve higher operational efficiencies and capture niche markets.
From a performance perspective, during the 2015-2018 period, the ABF substrate industry faced a downturn due to oversupply and low demand, leading to underutilized capacity and challenging profitability, reflected in poor EPS and key performance indicators. Post-2019, the industry experienced explosive growth due to the increased application of high-speed computing products and the demand surge brought by the COVID-19 pandemic, resulting in a booming market with rising demand and prices, significantly improving manufacturers′ EPS and performance metrics. The overall operational performance of the ABF substrate industry is not only related to the managerial strategies and decisions but also closely linked to the cyclical fortunes of the industry and the shifting application domains brought about by rapid technological advancements. The application of new technologies will have a disruptive and transformative impact on the industry. |
參考文獻 |
期刊與論文
1.Lin, Y. and Wu, L. Y. (2014) Exploring the role of dynamic capabilities in firm performance under the resource-based view framework, Journal of Business Research, 67(3), 407-413.
2.Kull, A. J., Mena, J. A. and Korschun, D. (2016) A tbresource-based view of stakeholder marketing, Journal of Business Research, 69(12), 5553-5560.
3.Ahuja, K., Segel, L. H. and Perrey, J. (2017) The Roots of Organic Growth, McKinsey Quarterly.
4.工研院產科國際所 (2022),「全球載板產業掃描與發展動態」,電路板季刊,卷期95,頁117-127。
5.工研院產科國際所 (2023),「全球載板產業掃描與發展動態」,電路板季刊,卷期100,頁108-121。
6.王欽宏 (2023),「後摩爾時代之載板技術發展」,電路板季刊,卷期98,頁38-43。
7.李文欽、丁文彬 (2022),「超高頻ABF載板材料:ABF Substrate Materials for High Frequency Applications」,工業材料,卷期428,頁64-74。
8.李長明 (2021),「全球晶片之戰 臺灣載板產業順勢而起」,機械工業,卷期459,頁5-8。
9.李裕正 (2023),《板級半導體先進封裝引領技術創新突破:以M公司為例》,國立清華大學高階經營管理碩士在職專班碩士論文。
10.李擁祁 (2023),《新冠疫情下IC載板業併購活動綜效分析之研究:以欣興併購旭德為例》,輔仁大學金融與國際企業學系金融碩士在職專班碩士論文。
11.呂家豪 (2017),《工業3.5IoT裝置和支持向量機於IC載板智慧製造之設備績效管理》,國立清華大學工業工程與工程管理學系所碩士論文。
12.吳正興 (2017),《覆晶載板業作業流程與產品資料管理規劃應用》,國立中央大學工業管理研究所在職專班碩士論文。
13.吳靜慈 (2020),《半導體先進封裝發展趨勢—封測廠與晶圓廠的競合策略研究》,國立交通大學管理學院管理科學學程碩士論文。
14.郭書言 (2023),《異軍突起—IC載板產業廠商之經營與發展策略分析:以景碩公司為例》,國立臺灣大學商學研究所碩士論文。
15.陳建榮 (2021),《半導體封裝公司在先進封裝發展策略之研究》,國立陽明交通大學管理學院高階主管管理碩士學程碩士論文。
16.陳信曄 (2023),《IC載板公司之供應商管理與評估研究—以A公司為研究個案》,國立中央大學工業管理研究所在職專班碩士論文。
17.陳靖函 (2021),「先進半導體構裝之封裝與IC載板材料市場趨勢」,工業材料,卷期416,頁47-56。
18.梁思謙 (2022),《臺灣IC載板產業競爭分析—以ABF載板為主軸》,國立陽明交通大學理學院應用科技學程碩士論文。
19.張淵菘 (2021),「2021 台灣與全球載板產業發展動態」,工研院產科國際所 IEK Consulting 。
20.張淵菘 (2023),「5G發展的基石:高頻高速電路板應用市場與技術趨勢分析」,工研院產科國際所IEK Consulting。
21.張晉鈞 (2020),《IC載板廠產能分配與訂單沖銷分析》,國立清華大學工業工程與工程管理學系碩士在職專班碩士論文。
22.端木龍君 (2016),《敏捷專案管之研究—以IC載板為例》,國立清華大學工業工程與工程管理學系碩士在職專班碩士論文。
23.謝忠明 (2020),《IC載板之自動化上下料設備的設計》,中原大學機械工程研究所碩士論文。
24.謝宜靜 (2018),《應用田口實驗法改善數位電視IC載板良率—以B公司為例》,國立交通大學管理學院工業工程與管理學程碩士論文。
25.魏智韻 (2022),《臺灣IC載板產業競爭分析—以ABF載板為主軸》,國立臺灣科技大學企業管理研究所碩士論文。
網路資料
1.Fugle 富果研究團隊 (2023),「ABF是什麼? IC 載板的關鍵材料!ABF 載板產業前景、需求評估一次看」,取自https://blog.fugle.tw/abf-report-2023/。
2.LTN財經通 (2022),「百年味精商 變半導體關鍵材料廠」,取自https://ec.ltn.com.tw/article/breakingnews/4150886。
3.THE NEWS LENS關鍵評論,「雷蒙多:美國需要《晶片法案2》領導全球半導體產業」,取自https://www.thenewslens.com/article/199228。
4.TPCA與工研院產科國際所 (2023),「全球載板產業掃描與發展動態」,取自https://www.tpca.org.tw/Knowledge/Detail?id=515&itemid=8&mid=252。
5.王欽宏 (2023),「玻璃實現ChatGPT用超高速傳輸載板」,工業技術研究院,取自https://www.itri.org.tw/。
6.行政院全球資訊網 (2023),「晶創臺灣方案—奠基臺灣未來10年科技國力」,取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/6dd41826-ed84-4b92-9f51-e6ebeb8621f8。
7.行政院全球資訊網 (2022),「政院通過《產業創新條例》第10條之2、第72條修正草案 提供史上最高研發及設備投資抵減 鞏固臺灣整體產業鏈韌性」,取自https://www.ey.gov.tw/Page/9277F759E41CCD91/e51d4f98-b140-4bec-8b66-b22c24e77438。
8.林妤柔 (2022),「供應鏈去台化掀起全球角力戰,各國晶片政策一次看」,科技新報,取自https://technews.tw/2022/12/13/global-semiconductor-subsidy/。
9.林妤柔 (2023),「南韓預計今通過《韓版晶片法》,大企業抵稅提高至 15%」,科技新報,取自https://technews.tw/2023/03/30/south-korea-pass-chips-act/。
10.林庭葦 (2022),「日本經濟安全保障推進法提出國家經濟安全四大政策」,資策會科技法律研究所,取自https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d
=8876。
11.味之素集團全球網站 (2024),「控制絕緣 加上縮微膠卷—Ajinomoto Build-up Film 層間絕緣」,取自https://www.ajinomoto.com/zh-TW/innovation/our_innovation
/buildupfilm 。
12.味之素精細科技 (2024),取自https://www.aft-website.com/en/。
13.欣興電子股份有限公司 (2024),取自https://www.unimicron.com/。
14.南亞電路板股份有限公司 (2024),取自https://www.nanyapcb.com.tw/nypcb/Chinese/index.aspx。
15.科技產業資訊室 (2021),「韓國政府提出半導體產業成長草案 稅收減免40%」,取自https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=17724。
16.洪尉淳 (2021),「日本半導體戰略與我國可能因應策略」,中華經濟研究院WTO及RTA中心,取自https://web.wtocenter.org.tw/mobile/page?pid=359205&nid=252。
17.國家發展委員會 (2022) ,「臺灣2050淨零排放路徑及策略總說明」,取自https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76。
18.財經新報 (2024),「美國晶片法案 2.0 瞄準供應鏈補助一成投資金額」,取自https://finance.technews.tw/2024/04/12/us-chip-act-2-0-targets-supply-chain/。
19.黃禾田 (2023),「先進封裝製造或將成美、中科技競爭另一戰線」,中華經濟研究院WTO及RTA中心,取自https://web.wtocenter.org.tw/Page/120/391862。
20.黃松勳 (2022),「拜登簽署晶片與科學法案,以鞏固美國在未來科技的領導位」,科技產業資訊室 iKnow,取自https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=19456。
21.景碩科技股份有限公司 (2024),取自https://www.kinsus.com.tw/zh-TW/Home/Index。
22.張淵菘 (2022),「電動車帶領PCB技術再進化」,工研院產科國際所與經濟部產業技術司,取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?
menu_id=13545&it_id=455。
23.張淵菘 (2024),「AI伺服器崛起賦能臺灣PCB技術躍升」,工研院產科國際所,取自https://www.moea.gov.tw/Mns/doit/industrytech/IndustryTech.aspx?menu_id=
13545&it_id=519。
24.環境部 (2023),《半導體製造業空氣污染管制及排放標準》,取自https://oaout.moenv.gov.tw/law/LawContent.aspx?id=FL015380。 |