博碩士論文 110523072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.15.143.18
姓名 簡正星(Cheng-Hsing Chien)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(Confidence-Aware Tile Selection for 6DoF Mixed Reality Streaming)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 混合實境(MR)的應用越來越受歡迎,因為它允許將虛擬物件疊加到現實世界上,從而促進虛擬宇宙的發展。本研究論文介紹了一種創新的 MR 串流媒體系統,該系統考慮了置信水平,其目標是在存在網路限制的情況下提高體驗品質 (QoE) 並優化資源分配。除了促進使用者在六個自由度上的移動之外,還設計了視野 (FoV) 分類問題來預測 FoV 中心和置信度分數。該方法用於建立新穎的可見性似然圖。據我們所知,這是第一個解決容易出錯的 FoV 預測挑戰的研究,其程度達到所有圖塊不需要基本資源的程度。結果表明,與替代方法相比,效用提高了約 33\%。當系統在 20 Mb/s 的頻寬限制下達到最大容量且丟失瓦片最少時,就會觀察到這種增加。
摘要(英) The application of mixed reality (MR) is gaining popularity as it allows virtual objects to be overlaid onto the real world, contributing to the development of the metaverse. This research paper introduces an innovative MR streaming system that takes into account confidence levels, with the goal of enhancing the quality of experience (QoE) and optimizing resource allocation in the presence of network limitations. Alongside facilitating user movements in six degrees of freedom, a problem of classifying the field of view (FoV) is devised to predict FoV centers and confidence scores. This approach is used to construct a novel visibility likelihood map. To the best of our knowledge, this is the first study to address the challenge of error-prone FoV prediction to such an extent that no basic resources are required for all tiles. The results demonstrate a utility increase of approximately 33\% compared to alternative methods. This increase is observed when the system reaches its maximum capacity at a bandwidth constraint of 20 Mb/s, with minimal missing tiles.
關鍵字(中) ★ 信心度
★ 資源分配
★ 點雲
★ 視野預測
關鍵字(英) ★ confidence
★ resource allocation
★ MR
★ FoV prediction
★ volumetric media streaming
論文目次 1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5.1 Volumetric Video Streaming . . . . . . . . . . . . . . . . . . . . 4
1.5.2 Viewpoint Prediction and Tile Selection . . . . . . . . . . . . . . 4
1.5.3 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . 5
2 System Model and Problem Formulation 7
2.1 Point Cloud Streaming Framework . . . . . . . . . . . . . . . . . . . . . 7
2.2 The Utility maximization problem . . . . . . . . . . . . . . . . . . . . . 7
3 6DoF Enabling Display Plane 9
4 Confidence-Aware FoV Center Prediction 11
4.1 The Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Likelihood Map Construction and Resource Allocation 13
5.1 Likelihood Map Construction . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Confidence-Aware FoV Center Filtering . . . . . . . . . . . . . . . . . . 14
5.3 Utility-based Resource Allocation Algorithm . . . . . . . . . . . . . . . 15
5.4 Execution Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . 15
6 Performance Evaluation 17
6.1 Simulation Environment and Parameters . . . . . . . . . . . . . . . . . . 17
6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Conclusion and Future Work 27
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Bibliography 28
參考文獻 [1] C. G. Fidalgo, Y. Yan, H. Cho, M. Sousa, D. Lindlbauer, and J. Jorge, “A survey on remote assistance and training in mixed reality environments,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 5, pp. 2291–2303, 2023.
[2] M. Zawish, F. A. Dharejo, S. A. Khowaja, S. Raza, S. Davy, K. Dev, and P. Bellavista, “AI and 6G Into the Metaverse: Fundamentals, Challenges and Future Research
Trends,” IEEE Open Journal of the Communications Society, vol. 5, pp. 730–778,2024.
[3] S. G ̈ul, S. Bosse, D. Podborski, T. Schierl, and C. Hellge, “Kalman filter-based head motion prediction for cloud-based mixed reality,” in Proceedings of the 28th ACM
International Conference on Multimedia, ser. MM ’20, New York, NY, USA, 2020,p. 3632–3641.
[4] J. Li, H. Wang, Z. Liu, P. Zhou, X. Chen, Q. Li, and R. Hong, “Towards optimal real-time volumetric video streaming: A rolling optimization and deep reinforcement learning based approach,” IEEE Transactions on Circuits and Systems for
Video Technology, 2023.
[5] J. Park, P. A. Chou, and J.-N. Hwang, “Rate-utility optimized streaming of volumetric media for augmented reality,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 1, pp. 149–162, 2019.
[6] J. Liu, B. Zhu, F. Wang, Y. Jin, W. Zhang, Z. Xu, and S. Cui, “Cav3: Cache-assisted viewport adaptive volumetric video streaming,” in 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). IEEE, 2023, pp. 173–183.
[7] E. Ramadan, A. Narayanan, U. K. Dayalan, R. A. K. Fezeu, F. Qian, and Z.-L.Zhang, “Case for 5g-aware video streaming applications,” in Proceedings of the 1st Workshop on 5G Measurements, Modeling, and Use Cases, New York, USA, 2021.
[8] J. v. d. Hooft, M. T. Vega, T. Wauters, C. Timmerer, A. C. Begen, F. D. Turck, and R. Schatz, “From capturing to rendering: Volumetric media delivery with six degrees
of freedom,” IEEE Communications Magazine, vol. 58, no. 10, pp. 49–55, 2020.
[9] C. Corbiere, N. Thome, A. Saporta, T.-H. Vu, M. Cord, and P. Perez, “Confidence estimation via auxiliary models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.
[10] F. Zhu, X.-Y. Zhang, Z. Cheng, and C.-L. Liu, “Revisiting confidence estimation: Towards reliable failure prediction,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pp. 1–18, 2023.
[11] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and H. Hellwagner, “Towards 6dof http adaptive streaming through point cloud compression,” in Proceedings of the 27th ACM International Conference on Multimedia, ser. MM ’19, New
York, USA, 2019, p. 2405–2413.
[12] J. Li, C. Zhang, Z. Liu, R. Hong, and H. Hu, “Optimal volumetric video streaming with hybrid saliency based tiling,” IEEE Transactions on Multimedia, pp. 1–1, 2022.
[13] S. Wang, J. Yang, and S. Bi, “Adaptive video streaming in multi-tier computing networks: Joint edge transcoding and client enhancement,” IEEE Transactions on Mobile Computing, 2023.
[14] X. Hou and S. Dey, “Motion prediction and pre-rendering at the edge to enable ultralow latency mobile 6dof experiences,” IEEE Open Journal of the Communications
Society, vol. 1, pp. 1674–1690, 2020.
[15] A. Yaqoob, M. A. Togou, and G.-M. Muntean, “Dynamic viewport selection-based prioritized bitrate adaptation for tile-based 360° video streaming,” IEEE Access,vol. 10, pp. 29 377–29 392, 2022.
[16] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan, “Toward practical volumetric video streaming on commodity smartphones,” in Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, 2019, pp. 135–140.
[17] M. Yang, Z. Luo, M. Hu, M. Chen, and D. Wu, “A comparative measurement study of point cloud-based volumetric video codecs,” IEEE Transactions on Broadcasting,
pp. 1–12, 2023.
[18] Z. Jiang, X. Zhang, Y. Xu, Z. Ma, J. Sun, and Y. Zhang, “Reinforcement learning based rate adaptation for 360-degree video streaming,” IEEE Transactions on Broadcasting, vol. 67, no. 2, pp. 409–423, 2020.
[19] R. P. Brent, “An algorithm with guaranteed convergence for finding a zero of a function,” The computer journal, vol. 14, no. 4, pp. 422–425, 1971.
[20] C.-W. Huang, I. Althamary, Y.-C. Chou, H.-Y. Chen, and C.-F. Chou, “A drl-based automated algorithm selection framework for cross-layer qos-aware scheduling and
antenna allocation in massive mimo systems,” IEEE Access, vol. 11, pp. 13 243–13 256, 2023.
[21] S. Park, A. Bhattacharya, Z. Yang, M. Dasari, S. R. Das, and D. Samaras, “Advancing user quality of experience in 360-degree video streaming,” in 2019 IFIP Networking Conference (IFIP Networking). IEEE, 2019, pp. 1–9.
[22] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and M. Gruteser, “Cutting the cord: Designing a high-quality untethered vr system with low latency remote rendering,” in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 2018, pp. 68–80
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2024-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明