博碩士論文 110523009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.218.38.67
姓名 林彥澄(Yen-Chen Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(A Digital Twin Based Learning Architecture for Resource Allocation in O-RAN)
相關論文
★ 基於馬賽克特性之低失真實體電路佈局保密技術★ 多路徑傳輸控制協定下從無線區域網路到行動網路之無縫換手
★ 感知網路下具預算限制之異質性子頻段分配★ 下行服務品質排程在多天線傳輸環境下的效能評估
★ 多路徑傳輸控制協定下之整合型壅塞及路徑控制★ Opportunistic Scheduling for Multicast over Wireless Networks
★ 適用多用戶多輸出輸入系統之低複雜度比例公平性排程設計★ 利用混合式天線分配之 LTE 異質網路 UE 與 MIMO 模式選擇
★ 基於有限預算標價式拍賣之異質性頻譜分配方法★ 適用於 MTC 裝置 ID 共享情境之排程式分群方法
★ Efficient Two-Way Vertical Handover with Multipath TCP★ 多路徑傳輸控制協定下可亂序傳輸之壅塞及排程控制
★ 移動網路下適用於閘道重置之群體換手機制★ 使用率能小型基地台之拍賣是行動數據分流方法
★ 高速鐵路環境下之通道預測暨比例公平性排程設計★ 用於行動網路效能評估之混合式物聯網流量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 隨著網路環境的持續發展,當前網路性能已不能滿足期望,需要進一步改進。O-RAN 引入 AI/ML workflow,旨在實現網路優化、預測性維護、智能流量管理、安全檢測和服務保證。將 AI/ML 整合到 O-RAN 中,運營商可以創建更高效、可靠和智能的網路,提供更優質的服務,降低成本,並適應不斷變化的需求。為解決對 AI/ML 模型信任度的問題,可採取包括選擇透明度高的模型、進行嚴格測試、遵守標準規格,以及進行跨領域協作。在虛擬環境中部署智能控制方法,如 near-RT RIC 的 xApp,可驗證演算法可行性並最小化錯誤決策。通過結合 AI/ML 技術的培訓環境,運營商能夠建立自動化的應用開發流程,同時降低與 AI/ML 部署相關的風險,從而實現網路性能的全面提升。
摘要(英) With the continuous development of the network environment, the current net-work performance has fallen short of expectations and there is a need for further improvement. Hence, O-RAN introduces AI/ML workflows to achieve network optimization, predictive maintenance, intelligent traffic management, security and anomaly detection, and customer experience. By integrating AI/ML workflows into O-RAN, operators can leverage the power of data-driven decision-making, automation, and optimization to create more efficient, reliable, and intelligent mobile networks. This enables them to deliver better service quality, reduce costs, and adapt to the evolving needs of mobile communication systems. To address concerns regarding trust in AI/ML models where network operators have limited control, several measures can be taken. Firstly, selecting models that offer transparency and explainability ensures operators can understand and interpret the decision-making process. Additionally, rigorous testing and validation in various scenarios, including simulated and real-world environments, help evaluate performance and reliability. Adhering to industry standards, regulations, and implementing security measures and privacy compliance also fosters trust. Collaborative development and peer reviews involving experts from different domains provide external validation. When comparing AI/ML solutions, considering vendor reputation, track record, performance metrics, and
customer reviews is crucial. Lastly, to ensure real network performance, deploying intelligent control methods in virtual environments, such as near-RT RIC’s xApp, can verify algorithm feasibility and minimize erroneous decisions. By leveraging training environments that combine expert knowledge with AI/ML techniques, operators can establish fully automated app development processes and mitigate risks associated with AI/ML deployments.
關鍵字(中) ★ 開放式無線網路
★ 排程演算法
★ 無線基地台
關鍵字(英) ★ Open RAN
★ Celluar
★ 6G
★ Scheduling
★ ns-3
論文目次 1 Introduction 1
2 Related Works 5
2.1 O-RAN Intelligence in the RIC 5
2.2 DT based ns-3 environment 6
2.3 Implementing risk for telecommunication operators 7
3 ns-3-based DT-Integrated Framework for Network Optimization 9
3.1 A DT-Integrated Approach 9
3.2 Key Features and Advantages 9
4 Problem Formulation and MDP Model 11
4.1 Problem Formulation 11
4.2 MDP model 12
4.2.1 Dynamic Algorithm Selection Model for O-RAN Near-RT RIC 13
4.2.2 Componentized Action 14
5 Scheduler Architecture and Implementation 17
5.1 Integration with ns-3 17
5.2 Component Architecture Design 18
5.3 Workflow and Decision Process 19
6 Numerical Results 21
6.1 Simulation Setup 21
6.2 Performance Evaluation 24
7 Conclusions 28
Bibliography 32
參考文獻 [1] “O-RAN.WG2.AIML-v01.03.”
[2] P. Trakadas, L. Sarakis, A. Giannopoulos, S. Spantideas, N. Capsalis, P. Gkonis, P. Karkazis, G. Rigazzi, A. Antonopoulos, M. A. Cambeiro et al., “A cost-efficient
5G non-public network architectural approach: Key concepts and enablers, building blocks and potential use cases,” Sensors, vol. 21, no. 16, p. 5578, 2021.
[3] A. Masaracchia, V. Sharma, M. Fahim, O. A. Dobre, and T. Q. Duong, “Digital twin for open RAN: Towards intelligent and resilient 6G radio access networks,” IEEE Communications Magazine, 2023.
[4] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1376–1411, 2023.
[5] L. Bariah, M. Debbah, H. Sari, and E. Bastug, “Guest Editorial: The Interplay of Digital Twin and 6G Wireless Networks,” IEEE Communications Magazine, vol. 61, no. 11, pp. 70–71, 2023.
[6] S. Jang, J. Jeong, J. Lee, and S. Choi, “Digital Twin for Intelligent Network: Data Lifecycle, Digital Replication, and AI-based Optimizations,” IEEE Communications Magazine, 2023.
[7] I. Vil`a, O. Sallent, and J. P ́erez-Romero, “On the design of a network digital twin for the radio access network in 5G and beyond,” Sensors, vol. 23, no. 3, p. 1197, 2023.
[8] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, and M. Zorzi, “End-to-end simulation of 5G mmWave networks,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2237–2263, 2018.
[9] A. Lacava, M. Bordin, M. Polese, R. Sivaraj, T. Zugno, F. Cuomo, and T. Melodia, “ns-o-ran: Simulating o-ran 5g systems in ns-3,” in Proceedings of the 2023 Workshop on ns-3, 2023, pp. 35–44.
[10] W. Garey, T. Ropitault, R. Rouil, E. Black, and W. Gao, “O-RAN with Machine Learning in ns-3,” in Proceedings of the 2023 Workshop on ns-3, 2023, pp. 60–68.
[11] G. d. C. Ferreira, P. S. Barreto, E. A. Alchieri, and P. H. de Carvalho, “ns3-ORAN: Uma Implementac ̧ao do Open-RAN para o Simulador ns-3,” in Anais Estendidos do XLI Simp ́osio Brasileiro de Redes de Computadores e Sistemas Distribu ́ıdos. SBC, 2023, pp. 24–31.
[12] M. A. A ̆gca, S. Faye, and D. Khadraoui, “A survey on trusted distributed artificial intelligence,” IEEE Access, vol. 10, pp. 55 308–55 337, 2022.
[13] Z. Li, W. Fang, C. Zhu, Z. Gao, and W. Zhang, “AI-enabled Trust in Distributed Networks,” IEEE Access, 2023.
[14] A. Habbal, M. K. Ali, and M. A. Abuzaraida, “Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions,” Expert Systems with Applications, vol. 240, p. 122442, 2024.
[15] H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and X. Hei, “ns3-ai: Fostering artificial intelligence algorithms for networking research,” in Proceedings of the 2020 Workshop on ns-3, 2020, pp. 57–64.
[16] P. Gawłowicz and A. Zubow, “ns3-gym: Extending openai gym for networking research,” arXiv preprint arXiv:1810.03943, 2018.
[17] Y.-C. Lin, Y.-C. Hsu, Y.-J. Chen, Y.-C. Chang, J.-Y. Fang, and C.-W. Huang, “Meta-Learning Traffic Pattern Adaptation for DRL-Based Radio Resource Management,”
in 2024 IEEE International Conference on Communications Workshops (ICC WS). IEEE, 2024.
[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.
[19] P.-C. Chen, Y.-C. Chen, W.-H. Huang, C.-W. Huang, and O. Tirkkonen, “DDPG-based radio resource management for user interactive mobile edge networks,” in 2020 2nd 6G Wireless Summit (6G SUMMIT). IEEE, 2020, pp. 1–5.
[20] N. Villegas, A. Larra ̃naga, L. Diez, K. Koutlia, S. Lag ́en, and R. Ag ̈uero, “Extending QoS-aware scheduling in ns-3 5G-LENA: A Lyapunov based solution,” in Proceedings of the 2024 Workshop on Ns-3, ser. WNS3 ’24. New York, NY, USA: Association for Computing Machinery, 2024, p. 54–59. [Online]. Available: https://doi.org/10.1145/3659111.3659118
指導教授 黃志煒(Chih-Wei Huang) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明