參考文獻 |
[1] “O-RAN.WG2.AIML-v01.03.”
[2] P. Trakadas, L. Sarakis, A. Giannopoulos, S. Spantideas, N. Capsalis, P. Gkonis, P. Karkazis, G. Rigazzi, A. Antonopoulos, M. A. Cambeiro et al., “A cost-efficient
5G non-public network architectural approach: Key concepts and enablers, building blocks and potential use cases,” Sensors, vol. 21, no. 16, p. 5578, 2021.
[3] A. Masaracchia, V. Sharma, M. Fahim, O. A. Dobre, and T. Q. Duong, “Digital twin for open RAN: Towards intelligent and resilient 6G radio access networks,” IEEE Communications Magazine, 2023.
[4] M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 2, pp. 1376–1411, 2023.
[5] L. Bariah, M. Debbah, H. Sari, and E. Bastug, “Guest Editorial: The Interplay of Digital Twin and 6G Wireless Networks,” IEEE Communications Magazine, vol. 61, no. 11, pp. 70–71, 2023.
[6] S. Jang, J. Jeong, J. Lee, and S. Choi, “Digital Twin for Intelligent Network: Data Lifecycle, Digital Replication, and AI-based Optimizations,” IEEE Communications Magazine, 2023.
[7] I. Vil`a, O. Sallent, and J. P ́erez-Romero, “On the design of a network digital twin for the radio access network in 5G and beyond,” Sensors, vol. 23, no. 3, p. 1197, 2023.
[8] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, and M. Zorzi, “End-to-end simulation of 5G mmWave networks,” IEEE Communications Surveys & Tutorials, vol. 20, no. 3, pp. 2237–2263, 2018.
[9] A. Lacava, M. Bordin, M. Polese, R. Sivaraj, T. Zugno, F. Cuomo, and T. Melodia, “ns-o-ran: Simulating o-ran 5g systems in ns-3,” in Proceedings of the 2023 Workshop on ns-3, 2023, pp. 35–44.
[10] W. Garey, T. Ropitault, R. Rouil, E. Black, and W. Gao, “O-RAN with Machine Learning in ns-3,” in Proceedings of the 2023 Workshop on ns-3, 2023, pp. 60–68.
[11] G. d. C. Ferreira, P. S. Barreto, E. A. Alchieri, and P. H. de Carvalho, “ns3-ORAN: Uma Implementac ̧ao do Open-RAN para o Simulador ns-3,” in Anais Estendidos do XLI Simp ́osio Brasileiro de Redes de Computadores e Sistemas Distribu ́ıdos. SBC, 2023, pp. 24–31.
[12] M. A. A ̆gca, S. Faye, and D. Khadraoui, “A survey on trusted distributed artificial intelligence,” IEEE Access, vol. 10, pp. 55 308–55 337, 2022.
[13] Z. Li, W. Fang, C. Zhu, Z. Gao, and W. Zhang, “AI-enabled Trust in Distributed Networks,” IEEE Access, 2023.
[14] A. Habbal, M. K. Ali, and M. A. Abuzaraida, “Artificial Intelligence Trust, Risk and Security Management (AI TRiSM): Frameworks, applications, challenges and future research directions,” Expert Systems with Applications, vol. 240, p. 122442, 2024.
[15] H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and X. Hei, “ns3-ai: Fostering artificial intelligence algorithms for networking research,” in Proceedings of the 2020 Workshop on ns-3, 2020, pp. 57–64.
[16] P. Gawłowicz and A. Zubow, “ns3-gym: Extending openai gym for networking research,” arXiv preprint arXiv:1810.03943, 2018.
[17] Y.-C. Lin, Y.-C. Hsu, Y.-J. Chen, Y.-C. Chang, J.-Y. Fang, and C.-W. Huang, “Meta-Learning Traffic Pattern Adaptation for DRL-Based Radio Resource Management,”
in 2024 IEEE International Conference on Communications Workshops (ICC WS). IEEE, 2024.
[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.
[19] P.-C. Chen, Y.-C. Chen, W.-H. Huang, C.-W. Huang, and O. Tirkkonen, “DDPG-based radio resource management for user interactive mobile edge networks,” in 2020 2nd 6G Wireless Summit (6G SUMMIT). IEEE, 2020, pp. 1–5.
[20] N. Villegas, A. Larra ̃naga, L. Diez, K. Koutlia, S. Lag ́en, and R. Ag ̈uero, “Extending QoS-aware scheduling in ns-3 5G-LENA: A Lyapunov based solution,” in Proceedings of the 2024 Workshop on Ns-3, ser. WNS3 ’24. New York, NY, USA: Association for Computing Machinery, 2024, p. 54–59. [Online]. Available: https://doi.org/10.1145/3659111.3659118 |