博碩士論文 111523060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.190.176.176
姓名 游知欣(Chih-Hsin Yu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 改良型 YOLOv8 模型於 nVIDIA 高效能運算器之即時無人機影像偵測與追蹤
(Modified YOLOv8 Model for Real-Time Drone Image Detection and Tracking with nVIDIA HPC)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 基於輔助波束對之UAV追蹤方法實現★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 偵測不同機種的無人機對於確保安全合法使用和防範潛在風險至關重要,本文利用視覺偵測的方法對無人機進行偵測,以 YOLOv8 物件偵測模型對六種不同型態的無人機進行影像辨識、分類。根據無人機在影像上為小物件的特性透過注意力機制對模型進行改良,使模型更加注重部分的影像訊息,抓取小物件的特徵;另外一方面,因應無人機的移動特性,在模型中加入可變形卷積,透過可變形卷積中加入偏移量的機制,使模型影像更能準確的偵測無人機。實驗結果表明,本文提出的在原始 YOLOv8 架構中加入注意力機制以及可變形卷積地模型比原始 YOLOv8 模型有更高的精確率。
摘要(英) Detecting different drone models is crucial for ensuring safe andlegal use while mitigating potential risks.In this paper employs visual detection using the YOLOv8 model to identify and classify six drone types.To enhance small object detection, attention mechanisms are integrated to focus on specific image details. Additionally, deformable convolutionsare included to address drone movement, improving detection accuracy.Results indicate that the proposed model, with attention mechanisms anddeformable convolutions, surpasses the original YOLOv8 model in precision.
關鍵字(中) ★ 無人機偵測
★ 視覺偵測
★ 物件偵測
★ 注意力機制
★ YOLOv8
關鍵字(英) ★ Drone Detection
★ Visual Detection
★ Object Detection
★ Attention Mechanism
★ YOLOv8
論文目次 中文摘要 . i
英文摘要 . ii
致謝詞 . iii
圖目錄 . ii
表目錄 . iv
第 1 章序論 1
1.1 無人機偵測 1
1.2 視覺偵測無人機 4
1.3 章節架構 7
第 2 章系統模型 8
2.1 即時無人機影像偵測與追蹤系統 8
2.2 加入射頻偵測之即時無人機影像偵測與追蹤系統 11
2.3 視覺偵測訓練資料 15
第 3 章即時無人機影像偵測與追蹤系統模組 18
3.1 相機調整模組 19
3.1.1 依據預設角度更新相機模組 20
3.1.2 依據視覺座標角度更新相機模組 21
3.1.3 相機倍率調整模組 23
3.2 無人機視覺偵測 25
3.3 無人機視覺追蹤 27
3.4 加入射頻偵測之即時無人機影像偵測與追蹤系統模組 30
第 4 章改良 YOLOv8 無人機視覺偵測模型 36
4.1 YOLOv8 36
4.1.1 Feature Fusing 39
4.1.2 Decoupled-Head Detection 39
4.2 注意力機制 40
4.2.1 Coordinate Attention 41
4.2.2 Convolutional Block Attention Module 43
4.3 Deformable Convolutional Networks 46
4.4 改良 YOLOv8 結構48
第 5 章實時系統模擬與結果分析 51
5.1 視覺偵測模型 51
5.1.1 視覺模型評估 51
5.1.2 視覺模型架構分析 53
5.1.3 視覺模型偵測影片結果 60
5.2 即時無人機影像偵測與追蹤系統偵測結果 63
5.3 加入射頻偵測之即時無人機影像偵測與追蹤系統偵測結果 . . 69
第 6 章結論與展望 74
參考文獻 76
參考文獻 [1] Y. Liu, X. Wan, H. Tang, J. Yi, Y. Cheng, and X. Zhang, “Digitaltelevision based passive bistatic radar system for drone detection,”in 2017 IEEE Radar Conference (RadarConf), 2017, pp. 1493–1497.
[2] M. Jian, Z. Lu, and V. C. Chen, “Drone detection and tracking basedon phase-interferometric doppler radar,” in 2018 IEEE Radar Conference (RadarConf18), 2018, pp. 1146-1149.
[3] R. Kochan, N. Hots, S. Fabirovskyy, V. Storozh, A. Kosterov,L. Ozirkovskyy, A. Helesh, S. Arkadii, V. Kochan, B. Strykhalyuk,M. Mykyichuk, and I. Demydov, “Approach to acoustic drone detection system development,” in 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced ComputingSystems: Technology and Applications (IDAACS), vol. 1, 2023, pp.471–476.
[4] M. Ohlenbusch, A. Ahrens, C. Rollwage, and J. Bitzer, “Robustdrone detection for acoustic monitoring applications,” in 2020 28thEuropean Signal Processing Conference (EUSIPCO), 2021, pp. 6–10.
[5] H. Liu, “Unmanned aerial vehicle detection and identification using deep learning,” in 2021 International Wireless Communications and Mobile Computing (IWCMC), 2021, pp. 514–518.
[6] W. Nie, Z.-C. Han, M. Zhou, L.-B. Xie, and Q. Jiang, “Uav detection and identification based on wifi signal and rf fingerprint,” IEEE Sensors Journal, vol. 21, no. 12, pp. 13 540–13 550, 2021.
[7] C. Xu, F. He, B. Chen, Y. Jiang, and H. Song, “Adaptive rf fingerprint decomposition in micro uav detection based on machine learning,” in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp.7968–7972.
[8] D. Lee, W. Gyu La, and H. Kim, “Drone detection and identification system using artificial intelligence,” in 2018 International Conference on Information and Communication Technology Convergence (ICTC), 2018, pp. 1131–1133.
[9] Y. Tao, Z. Zongyang, Z. Jun, C. Xinghua, and Z. Fuqiang, “Low altitude small-sized object detection using lightweight featureenhanced convolutional neural network,” Journal of Systems Engineering and Electronics, vol. 32, no. 4, pp.841–853, 2021.
[10] Y. Sun, X. Zhi, H. Han, S. Jiang, T. Shi, J. Gong, and
W. Zhang, “Enhancing uav detection in surveillance camera videos through spatiotemporal information and optical flow,” Sensors, vol. 23, no. 13, 2023. [Online]. Available: https://www.mdpi.com/1424-8220/23/13/6037
[11] D. Grimes and D. Valles, “Performance analysis of tensorflow2 object detection api models for engineering site surveillance applications,” in 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), 2023, pp. 0547–0552.
[12] W. Meng and M. Tia, “Unmanned aerial vehicle classification and detection based on deep transfer learning,” in 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), 2020, pp. 280–285.
[13] T. He, X. Ye, and M. Wang, “An improved swimming pool drowning detection method based on yolov8,” in 2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC), vol. 7, 2023, pp. 835–839.
[14] Y. Zhang, C. Wu, T. Zhang, Y. Liu, and Y. Zheng, “Self-attentionguidance and multiscale feature fusion-based uav image object detection,” IEEE Geoscience and Remote Sensing Letters, vol. 20, pp.1–5, 2023.
[15] H. Wang, S. Zhang, L. Yu, and C. Shi, “Yolo target detection algorithm with deformable convolution kernel,” in 2021 IEEE International Conference on Mechatronics and Automation (ICMA), 2021,pp. 768–772.
[16] L. Wenju, Y. Jie, S. Liye, and C. Liu, “Traffic sign recognition based on deformable convolutions,” in 2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), vol. 8, 2023, pp. 122–126.
[17] P. Phung, T.-H. Lu, T.-T. Nguyen, L. Le Ngoc, H. Nguyen, and V.-P. Hoang, “Multi-model deep learning drone detection and tracking in complex background conditions,” 10 2021, pp. 189–194.
[18] J. Liu, H. Liu, and H. Watanabe, “Video salient object detection using multi-scale self-attention,” in 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), 2023, pp. 368–371.
[19] C. Liu and C. Xi, “A multi-strategy integrated optimized yolov8 algorithm for object detection,” in 2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), 2023, pp. 893–899.
[20] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile network design,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 13 708–13 717.
[21] S. Woo, J. Park, J.-Y. Lee, and I.-S. Kweon, “Cbam: Convolutional block attention module,” ArXiv, vol. abs/1807.06521, 2018.[Online]. Available: https://api.semanticscholar.org/CorpusID:49867180
[22] P. Jiang, “Deformable convolutional neural network for finegrained image recognition,” in 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 2019, pp. 1671–1674.
[23] M. Zhang, Z. Wang, W. Song, D. Zhao, and H. Zhao, “Efficient small-object detection in underwater images using the enhanced yolov8 network,” Applied Sciences, vol. 14, no. 3, 2024. [Online].Available: https://www.mdpi.com/2076-3417/14/3/1095
指導教授 張大中(Dah-Chung Chang) 審核日期 2024-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明