博碩士論文 111523058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:13.59.111.183
姓名 湯政航(Chen-Hang Tang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
(Study of the UAV Tracking Method with the Digital Monopulse Receiver and Particle Based Algorithm)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於輔助波束對之UAV追蹤方法實現
★ 使用MMSE等化器的Filterbank OFDM系統探討★ Kalman Filtering應用於可適性載波同步系統之研究
★ 無線區域網路之MIMO-OFDM系統設計與電路實現★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現
★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現
★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現★ 數位地面視訊廣播系統同步模組 之設計與電路實現
★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測
★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法★ 正交分頻多工系統之資料訊號裁剪雜訊消除
★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器★ 半盲目通道追蹤演算法使用於正交分頻多工系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來無人機(UnmannedAerial Vehicle, UAV) 的應用方式非常多元,然而隨著無人機應用的增加,對空域未經許可或未遵守相關法規,進入他人特定區域的空域,可能對安全、隱私和公共秩序遭成威脅。為了防治非法無人機入侵,對於無人機的偵測是一個重要的研究議題。我們採用了電子訊號監測到達角度(Direction of Arrival, DOA)的方法來估測無人機訊號源,我們考慮了單脈衝雷達演算法(Monopulse)一種廣為人知且技術成熟的雷達技術,該演算法能夠快速提供精準的目標物估測角度,非常適合即時追蹤的應用。而現今多天線波束成型技術(Beamforming)成熟,只需控制不同天線的相位和振幅大小也可以實現傳統單脈衝的能力。
對於到達角的估測,除了直接估測角度之外,自適應演算法也是不可或缺的一環,我們採用無跡卡爾曼濾波器(Unscented Kalman Filter, UKF),對於移動的無人機能有效的降低估測誤差,使追蹤路線更平滑。考慮於多天線波束成型技術的天線不需轉動且估測更快速,但還是有缺點,例如雷達視野(Fieldofview,FOV)有限制,我們將比對固定天線追蹤和天線轉動的版本,分析其不同場景追蹤的優劣好壞,如無人機移動速、不同的運動軌跡,且考慮硬體成本的限制,如分時使用兩個線性陣列估測方位角和仰角,與使用均勻平面陣列一次估測兩個角度,分析其對於無人機的追蹤效能。
摘要(英) In recent years,the applications of Unmanned AerialVehicles(UAVs) have become highly diverse. However,with the increasing use of UAVs,unauthorized or non-compliant entry into specific airspaces poses threats to safety, privacy, and public order. To prevent illegal drone intrusions,drone detection has become a critical research topic. We employed the Direction of Arrival (DOA) method using electronic signal monitoring to estimate drone signals. We considered the monopulse radar algorithm, a well-known and mature radar technology that quickly provides accurate target angle estimations, making it highly suitable for real-time tracking.With the advancement of multi-antenna beamforming technology,traditional monopulse radar capabilities can now be achieved by controlling the phase and amplitude of different antennas. For DOA estimation, adaptive algorithms are also indispensable. We adopted the Unscented Kalman Filter (UKF), which effectively reduces estimation errors and smooths tracking paths for moving drones.
While multi-antenna beamforming allows for faster and more accurate estimations without moving antennas, it has
limitations such as a restricted field of view (FOV). We compared fixed-antenna tracking and rotating-antenna tracking versions, analyzing their advantages and disad
vantages in different scenarios, such as varying drone speeds and movement trajectories. Additionally, we considered hardware cost constraints, such as using two linear arrays in time-division mode to estimate azimuth and elevation angles versus using a uniform planar array to estimate both angles simultaneously, and analyzed their tracking performance for drones.
關鍵字(中) ★ 到達角
★ 單脈衝
★ 波束成型
★ 無跡卡爾曼濾波器
關鍵字(英) ★ Direction of Arrival
★ Monopulse
★ Beamforming
★ Unscented Kalman Filter
論文目次 中文摘要.................... .. .. .. .. .. i
英文摘要.................... .. .. .. .. .. iii
致謝詞....................... .. .. .. .. .. . v
目錄....................... . .. .. .. .. .. i
圖目錄....................... .. .. .. .. .. . ii
表目錄....................... .. .. .. .. .. . iii
第1章序論................. . .. .. .. .. .. 1
1.1簡介............ .. .. .. .. .. . 1
1.2章節架構....... .. .. .. .. .. 4
第2章系統架構.............. .. .. .. .. .. 6
2.1均勻線性陣列天線.. .. .. .. .. . 7
2.2均勻平面陣列天線.. .. .. .. .. . 8
2.3波束成型(Beamforming) .. .. ................... 11
第3章訊號演算法處理........ .. .. .. .. .. 14
3.1初始波束搜索.... .. .. .. .. .. 14
3.2單脈衝振幅比較法.. .. .. .. .. . 15
3.3三維空間中的單脈衝振幅比較法........................ 21
第4章到達角之自適應追蹤..... .. .. .. .. .. . 27
第5章系統模擬與結果分析..... .. .. .. .. .. . 33
5.1單脈衝角度估計性能分析... ........................... 33
5.1.1陣列天線合理估計範圍分析........................ 34
5.1.2移動目標角速度追蹤性能分析...................... 38
5.1.3無跡卡爾曼針對追蹤無人機之效能分析.............. 41
5.1.4訊號取樣數對於追蹤無人機效能分析................ 46
5.2模擬結果....... .. .. .. .. .. 48
5.2.1模擬環境一:MATLAB . .. . ......................... 48
5.2.2模擬環境二:SDR .. .. .......................... 53
第6章結論................. . .. .. .. .. .. 59
參考文獻.................... .. .. .. .. .. 60
參考文獻 [1] J. Sadovskis and A. Aboltins, “Modern methods for uav detection,classification, and tracking,” in 2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2022, pp. 1–7.
[2] M. Schurwanz, S. Oettinghaus, J. Mietzner, and P. A. Hoeher, “Using widely separated mimo antennas for uav radar direction-of arrival estimation,” in 2022 19th European Radar Conference (EuRAD), 2022, pp. 281–284.
[3] W. Nie, Z.-C. Han, M. Zhou, L.-B. Xie, and Q. Jiang, “Uav detection and identification based on wifi signal and rf fingerprint,” IEEE Sensors Journal, vol. 21, no. 12, pp. 13540–13550, 2021.
[4] J. Li, D. H. Ye, M. Kolsch, J. P. Wachs, and C. A. Bouman, “Fast and robust uav to uav detection and tracking from video,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp.1519–1531, 2022.
[5] A. Satish and A. Medda, “Acoustic uav detection using spherical array beamforming,” in 2022 56th Asilomar Conference on Signals,Systems, and Computers, 2022, pp. 446–450.
[6] S. Harman, “Analysis of the radar return of micro-uavs in flight,” in 2017 IEEE Radar Conference (RadarConf), 2017, pp. 1159–1164.
[7] R. Schmidt, “Multiple emitter location and signal parameter esti
mation,” IEEE Transactions on Antennas and Propagation, vol. 34,no. 3, pp. 276–280, 1986.
[8] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics,Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
[9] F. Gao and A. Gershman, “A generalized esprit approach to direction-of-arrival estimation,” IEEE Signal Processing Letters,vol. 12, no. 3, pp. 254–257, 2005.
[10] M. Skolnik, Radar Handbook, Third Edition, ser. Electronics electrical engineering. McGraw-Hill Education, 2008. [Online].
Available: https://books.google.com.tw/books?id=76uF2Xebm-gC
[11] S. Sherman and D. Barton, Monopulse Radar Theory and Practice,Second Edition, ser. Artech House radar library. Artech House,
2011. [Online]. Available: https://books.google.com.tw/books?id=Il8wDwAAQBAJ
[12] U. Nickel, “Overview of generalized monopulse estimation,” IEEE Aerospace and Electronic Systems Magazine, vol. 21, no. 6, pp. 2756, 2006.
[13] C. An, J. Yang, R. Ran, U. Pak, Y. Ryu, and D. Kim, “Tactical uav localization using coordinated monopulse trackers with low rate feedback,” International Journal of Advanced Robotic Systems,vol. 10, Jul. 2013.
[14] Y. Li, J. Zhao, X. Jiang, and J. Lin, “An effective integrated communication and localization method based on digital phased array antenna,” in 2021 7th International Conference on Computer and Communications (ICCC), 2021, pp. 2185–2189.
[15] S. Gogineni and A. Nehorai, “Target tracking using monopulse mimo radar with distributed antennas,” in 2010 IEEE Radar Conference, 2010, pp. 194–199.
[16] ——, “Monopulse mimo radar for target tracking,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 755–768, 2011.
[17] H. Yan and H. Fan, “A wideband kalman doa tracking algorithm,” in Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006., 2006, pp. 45–49. 61
[18] H.-L. Song, Y.-c. Ko, J. Cho, and C. Hwang, “Beam tracking algorithm for uavcommunicationsusingkalmanfilter,” in 2020 International Conference on Information and Communication Technology Convergence (ICTC), 2020, pp. 1101–1104.
[19] H.-L. Song and Y.-C. Ko, “Robust and low complexity beam tracking with monopulse signal for uav communications,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3505–3513, 2021.
[20] W. Montlouis, “Doav estimation using l-shaped antenna array con
figuration,” in 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2020, pp. 1–5.
指導教授 張大中(Dah-Chung Chang) 審核日期 2024-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明