博碩士論文 111523006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:18.218.2.191
姓名 劉泳成(Yung-Cheng Liu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於輔助波束對之UAV追蹤方法實現
(Realization of a UAV Tracking Technique Based on Auxiliary Beam Pair Algorithm)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 基於數位單脈衝接收機與質點演算法之無人機追蹤效能分析
★ 使用MMSE等化器的Filterbank OFDM系統探討★ Kalman Filtering應用於可適性載波同步系統之研究
★ 無線區域網路之MIMO-OFDM系統設計與電路實現★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現
★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現
★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現★ 數位地面視訊廣播系統同步模組 之設計與電路實現
★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測
★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法★ 正交分頻多工系統之資料訊號裁剪雜訊消除
★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器★ 半盲目通道追蹤演算法使用於正交分頻多工系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來無人機(UAV)的發展與應用正迅速擴展,從民用到軍事領域都有廣泛應用。在民用領域,無人機被應用於航空攝影、農業、物流配送、災害應急等各個方面。例如,農業無人機可用於作物監測、噴灑農藥,提高了農業生產效率;物流配送無人機則可以快速送達包裹,解決了最後一公里配送難題。在軍事方面,無人機被用於偵察、目標定位、空中攻擊等任務,大大提高了戰場情報的即時性和準確性,降低了人員傷亡風險。然而,當無人機被當作軍事武器,往往會造成極大的危險與損害,因此防治無人機便是一個重要的問題,本篇論文使用了輔助波束對演算法,它可以估計無人機的接收角度(AOA),且相對於以往的數位波束成型的演算法,它的計算複雜度較低,且實現成本也相對不高,因此是個極高性價比的角度估計演算法。為了持續追蹤無人機,我們還結合了擴展卡爾曼濾波器,能讓追蹤無人機的誤差更低。除了完整的系統模擬,也會使用軟體定義無線電平台(SDR)及馬達來實現角度估計及持續追蹤無人機,最後用模擬及實作結果進行分析與討論。
摘要(英) In recent years, the development and application of Unmanned
Aerial Vehicles (UAVs) have been rapidly expanding, with widespread use in both civilian and military sectors. In civilian applications, UAVs are utilized for aerial photography, agriculture, logistics delivery, disaster response, and more. For instance, agricultural UAVs are employed for crop monitoring and pesticide spraying, improving agricultural productivity; while logistics delivery UAVs facilitate rapid parcel delivery, addressing last-mile delivery challenges. In the military realm, UAVs are used for reconnaissance, target location, and aerial strikes, significantly enhancing the real-time and accuracy of battlefield intelligence while reducing the risk of casualties. However, when employed as military weapons, UAVs can pose significant dangers and damages. Therefore, UAV countermeasures have become an important issue. This paper introduces the Auxiliary Beam Pair (ABP) algorithm for UAV angle estimation, which offers lower computational complexity and cost compared to conventional Digital Beamforming (DBF) algorithms, making it a highly cost-effective angle estimation approach. To maintain continiuous UAV tracking, an Extended Kalman Filter (EKF) is integrated to minimize tracking errors. In addition to comprehensive system simulations, software-defined radio (SDR) platforms and motors are utilized for angle estimation and continuous UAV tracking. Finally, both simulation and implementation results are analyzed and discussed.
關鍵字(中) ★ 無人機
★ 均勻平面陣列
★ 波束成型
★ 波束搜尋
★ 入射角估計
★ 輔助波束對
★ 擴展卡爾曼濾波器
★ 無跡卡爾曼濾波器
★ 軟體定義無線電
關鍵字(英) ★ UAV
★ UPA
★ Beamforming
★ Beam searching
★ DOA estimation
★ ABP
★ EKF
★ UKF
★ SDR
論文目次 中文摘要. . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . iii
致謝詞. . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . iii
第1 章序論. . . . . . . . . . . . . . . . 1
1.1 簡介. . . . . . . . . . . . . . . . . 1
1.2 射頻開關. . . . . . . . . . . . . . . 3
1.3 章節架構. . . . . . . . . . . . . . . 3
第2 章系統架構. . . . . . . . . . . . . . 4
2.1 接收系統架構. . . . . . . . . . . . . 4
2.2 天線陣列. . . . . . . . . . . . . . . 7
2.2.1 均勻線性陣列. . . . . . . . . . . . 7
2.2.2 均勻平面陣列. . . . . . . . . . . . 9
第3 章角度估計演算法. . . . . . . . . . . 11
3.1 初始空間特徵檢測. . . . . . . . . . . 11
3.2 一維輔助波束對角度估計法. . . . . . . 14
3.3 二維輔助波束對角度估計法. . . . . . . 18
第4 章基於輔助波束對之適應追蹤. . . . . . 20
4.1 基於輔助波束對之擴展卡爾曼濾波器. . . 20
4.2 基於輔助波束對之無跡卡爾曼濾波器. . . 24
第5 章結果與分析. . . . . . . . . . . . 27
5.1 效能分析. . . . . . . . . . . . . . 27
5.1.1 FOV 比較. . . . . . . . . . . . . 31
5.1.2 目標物入射角速度比較. . . . . . . . 33
5.1.3 演算法與模式比較. . . . . . . . . . 35
5.1.4 Snapshot 比較. . . . . . . . . . . 37
5.2 模擬與實作結果. . . . . . . . . . . . 38
5.2.1 模擬結果. . . . . . . . . . . . . . 39
5.2.2 實現結果. . . . . . . . . . . . . . 42
第6 章結論及未來展望. . . . . . . . . . . . 49
參考文獻. . . . . . . . . . . . . . . . . 51
參考文獻 [1] T. H. Pham, D. Ichalal, and S. Mammar, “Complete coverage path planning for pests-ridden in precision agriculture using uav,” in 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC), 2020, pp. 1–6.
[2] T. Moranduzzo and F. Melgani, “Monitoring structural damages in big industrial plants with uav images,” in 2014 IEEE Geoscience and Remote Sensing Symposium, 2014, pp. 4950–4953.
[3] R. Reshma, T. K. Ramesh, and P. S. Kumar, “Security incident management in ground transportation system using uavs,” in 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 2015, pp. 1–7.
[4] T. Anagnostopoulos, “Flying carpets: Assessing artificial intelligence as an entertainment service,” in 2023 27th International Conference on Circuits, Systems, Communications and Computers (CSCC), 2023, pp. 39–42.
[5] A. Deb, S. I. Ahmed, A. Islam, M. Haque, S. A. Fattah, and C. Shahnaz, “A real-time automatic dengue breeding zone detection and prevention scheme based on mobilenetv2 enabled autonomous drone,” in 2023 26th International Conference on Computer and Information Technology (ICCIT), 2023, pp. 1–6.
[6] X. Dai, Y. Mao, T. Huang, B. Li, and D. Huang “Navigation of simultaneous localization and mapping by fusing rgb-d camera and imu on uav,” in 2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), 2019, pp. 6–11.
[7] Y.-q. Fang and X. Fan, “Performance evaluation for ir small target tracking algorithm,” in 2011 Sixth International Conference on Image and Graphics, 2011, pp. 749–753.
[8] X. Chang, C. Yang, J. Wu, X. Shi, and Z. Shi, “A surveillance system for drone localization and tracking using acoustic arrays,” in 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2018, pp. 573–577.
[9] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, 1987.
[10] B. Van Veen and K. Buckley, “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.
[11] H. Singh, S.-K. Yong, J. Oh, and C. Ngo, “Principles of ieee 802.15.3c: Multi-gigabit millimeter-wave wireless pan,” in 2009 Proceedings of 18th International Conference on Computer Communications and Networks, 2009, pp. 1–6.
[12] F. Che, J. Li, Y. Niu, L. Wu, W. Yao, and C. Yan, “Linear rotate subspace based visual tracking methods with application to uav standoff target tracking,” in 2019 IEEE International Conference on Unmanned Systems (ICUS), 2019, pp. 914–919.
[13] R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, 1986.
[14] A. Paulraj, R. Roy, and T. Kailath, “Estimation of signal parameters via rotational invariance techniques- esprit,” in Nineteeth Asilomar Conference on Circuits, Systems and Computers, 1985., 1985, pp. 83–89.
[15] S. J. Orfanidis, “Electromagnetic waves and antennas.”
[16] D. Zhu, J. Choi, and R. W. Heath, “Auxiliary beam pair enabled aod and aoa estimation in closed-loop large-scale millimeter-wave mimo systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4770–4785, 2017.
[17] K.-B. Yu and M. F. Fernández, “Robust adaptive monopulse processing for multiple observations with applications to ts-mimo radar,” in 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), 2020, pp. 1–5.
[18] S. Yang and H. Li, “Application of ekf and ukf in target tracking problem,” in 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 01, 2016, pp. 116–120.
[19] E. Wan and R. Van Der Merwe, “The unscented kalman filter for nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158.
[20] I. Selin, “The kalman filter and nonlinear estimates of multivariate normal processes,” IEEE Transactions on Automatic Control, vol. 9, no. 3, pp. 319–319, 1964.
[21] S. Zeisberg, M. Bauling, and A. Finger, “Wlan evolution from hiperlan type 2 to median,” in Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324), vol. 5, 1999, pp. 2656–2660 vol.5.
[22] D. Zhu, J. Choi, Q. Cheng, W. Xiao, and R. W. Heath, “High resolution angle tracking for mobile wideband millimeter-wave systems with antenna array calibration,” IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7173–7189, 2018.
[23] P. Kristalina, A. Pratiarso, T. Badriyah, and E. D. Putro, “A wireless sensor networks localization using geometric triangulation scheme for object tracking in urban search and rescue application,” in 2016 2nd International Conference on Science in Information Technology (ICSITech), 2016, pp. 254–259.
指導教授 張大中(Dah-Chung Chang) 審核日期 2024-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明