博碩士論文 111552030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.144.104.175
姓名 張凱婷(Kai-Ting Chang)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 RISC-V機械手臂控制系統晶片多軸運動控制硬體加速器開發
(Development of a Multi-Axis Motion Control Hardware Accelerator for a RISC-V Based Robotic Arm Control System On a Chip)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-17以後開放)
摘要(中) 本研究針對傳統可程式邏輯控制器(PLC)在高速、高精度運動控制中的
局限性,提出一種基於現場可程式化邏輯閘陣列(FPGA)的硬體加速器設計方法。傳統 PLC雖然因其高度的可靠性和穩定性而廣泛應用,但在處理複雜運動控制算法時,軟體運算的反應時間和處理速度往往不足,難以滿足現代工業對即時性和高精度的需求。為解決這一問題,本研究將 PLC的基本運動控制功能(如 COUNTER、TIMER 和 PWM)硬體化,並整合到硬體加速器中,利用其平行處理能力和高速計算性能,有效提升系統的反應速度和控制精度。
實驗結果顯示,基於 FPGA 的硬體加速器在多軸運動控制中的性能顯著優
於傳統的 PLC控制方法。在 TIMER和 PWM功能測試中,硬體加速器展示出
更短的處理時間和更高的即時性,顯示出硬體加速器在多軸同步運動控制中的巨大潛力。該設計的成功應用驗證了硬體加速技術在提升運動控制系統效能方面的可行性,為工業自動化領域提供了一種高效、可靠的技術解決方案。
本研究提出了一個通過硬體加速技術,顯著提高多軸運動控制系統的性能
和效率的方法,並為未來在更複雜運動控制應用中的技術發展奠定了堅實基礎。
摘要(英) This study addresses the limitations of traditional Programmable Logic Controllers (PLCs) in high-speed, high-precision motion control by proposing a hardware accelerator design method based on Field-Programmable Gate Arrays
(FPGAs). While traditional PLCs are widely used for their high reliability and stability, their software computation often falls short in response time and computation speed when processing complex motion control algorithms, failing to meet the real-time and high-precision demands of modern industry. To overcome this issue, this research hardware-implements basic PLC motion control functions (such as
COUNTER, TIMER, and PWM) and integrates them into a hardware accelerator, leveraging its parallel processing capabilities and high-speed computational performance to effectively enhance system response speed and control accuracy.
Experimental results indicate that FPGA-based hardware accelerators significantly outperform traditional PLC control methods in multi-axis motion control. In tests of TIMER and PWM functions, the hardware accelerator demonstrated shorter processing times and higher real-time performance, highlighting its great potential in multi-axis synchronous motion control. The successful application of this design validates the feasibility of using hardware acceleration technology to enhance the performance of motion control systems, providing an efficient and reliable technical solution for the industrial automation field.
This study proposes a method to significantly enhance the performance and efficiency of multi-axis motion control systems through hardware acceleration technology, laying a solid foundation for future technological developments in more complex motion control applications.
關鍵字(中) ★ 機械手臂
★ 多軸運動控制
★ 硬體加速器
關鍵字(英) ★ RISC-V
★ FPGA
★ PLC
★ PLCopen
論文目次 目錄
摘要...................................................... i
Abstract ................................................ ii
誌謝.................................................... iii
目錄..................................................... iv
圖目錄.................................................. vii
表目錄.................................................... x
第一章、緒論............................................... 1
1.1 研究背景與動機......................................... 1
1.2 研究目的.............................................. 4
1.3 論文架構 ............................................. 4
第二章、運動控制技術回顧................................... 5
2.1 運動控制.............................................. 5
2.2 PLC.................................................. 6
2.2.1 原理和結構.......................................... 7
2.2.2 PLC程式語言......................................... 9
2.3 PLCopen.............................................. 12
2.4 運動控制功能.......................................... 13
2.4.1 脈衝寬度調變(PWM)................................... 14
2.4.2 計時器(TIMER)...................................... 15
2.4.3 計數器(COUNTER).................................... 16
2.5 硬體加速相關技術...................................... 17
2.5.1 現場可程式化邏輯閘陣列(FPGA)......................... 17
2.5.2 管線化和平行化...................................... 19
2.5.3 同步控制原理........................................ 21
2.6 RISC-V系統晶片....................................... 24
2.6.1 系統架構........................................... 24
2.6.2 自定義擴充指令設計.................................. 25
第三章、多軸運動控制器硬體設計............................. 27
3.1 多軸運動控制器架構設計................................. 28
3.2 多軸運動控制器離散事件建模............................. 30
3.2.1 COUNTER............................................ 32
3.2.2 TIMER.............................................. 33
3.2.3 PWM................................................ 35
3.2.4 平行化控制......................................... 37
3.3 多軸運動控制器高階硬體合成............................. 39
第四章、運動控制功能驗證................................... 43
4.1 開發環境............................................. 43
4.1.1 開發平台........................................... 43
4.1.2 硬體驗證開發版...................................... 44
4.1.3 軟體開發版......................................... 45
4.1.4 邏輯分析儀(LAD1010)................................ 46
4.2 RISC-V機械手臂控制系統晶片平台......................... 48
4.3 功能波形模擬驗證...................................... 49
4.3.1 運動控制功能:COUNTER控制器模組....................... 50
4.3.2 運動控制功能:TIMER控制器模.......................... 54
4.3.3 運動控制功能:PWM控制器模組........................... 58
4.4 時序驗證結果.......................................... 61
第五章、結論與未來方向..................................... 66
5.1 結論................................................. 66
5.2 未來展望............................................. 67
參考文獻................................................. 68
參考文獻 參考文獻
[1] S. K. Jagatheesaperumal, M. Rahouti, K. Ahmad, A. Al-Fuqaha and M. Guizani, "The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions," in IEEE Internet of Things Journal, vol. 9, no. 15, pp. 12861-12885, 1 Aug.1, 2022, doi: 10.1109/JIOT.2021.3139827.
[2] M. A. Sehr et al., "Programmable Logic Controllers in the Context of Industry 4.0," in IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3523-3533, May 2021, doi: 10.1109/TII.2020.3007764.
[3] M. Zhuang, G. Li and K. Ding, "Obstacle Avoidance Path Planning for Apple Picking Robotic Arm Incorporating Artificial Potential Field and A* Algorithm," in IEEE Access, vol. 11, pp. 100070-100082, 2023, doi: 10.1109/ACCESS.2023.3312763.
[4] M. Sallam et al., "Prototype Realization of a Human Hand-Inspired Needle Driver for Robotic-Assisted Surgery," in IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 4, pp. 843-856, Nov. 2023, doi: 10.1109/TMRB.2023.3309942.
[5] E. M. Jafarov, M. N. A. Parlakci and Y. Istefanopulos, "A new variable structure PID-controller design for robot manipulators," in IEEE Transactions on Control Systems Technology, vol. 13, no. 1, pp. 122-130, Jan. 2005, doi:
10.1109/TCST.2004.838558.
[6] M. Xu, H. Zhang and H. Tang, "Design of motion control system for robot car based on DSP," 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 2017, pp. 7494-7497, doi: 10.1109/CCDC.2017.7978542.
[7] K. T. Erickson, "Programmable logic controllers," in IEEE Potentials, vol. 15, no.1, pp. 14-17, Feb.-March 1996, doi: 10.1109/45.481370.
[8] M. G. Ioannides, "Design and implementation of PLC-based monitoring control system for induction motor," in IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 469-476, Sept. 2004, doi: 10.1109/TEC.2003.822303.
[9] D. Puiu, F. Moldoveanu and M. Cernat, "The distributed control of an articulated arm robot," 2009 International Conference on Electrical and Electronics Engineering - ELECO 2009, Bursa, Turkey, 2009, pp. II-247-II-251, doi: 10.1109/ELECO.2009.5355322.
[10] 尤肇銘, "基於 PLCopen 的分散式運動控制器設計與實作", 資訊工程所, 國立中央 大學, 2014.
[11] E. Monmasson and M. N. Cirstea, "FPGA Design Methodology for Industrial Control Systems—A Review," in IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1824-1842, Aug. 2007, doi: 10.1109/TIE.2007.898281.
[12] S. Liu, H. Fan, M. Ferianc, X. Niu, H. Shi and W. Luk, "Toward Full-Stack Acceleration of Deep Convolutional Neural Networks on FPGAs," in IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 8, pp. 3974-3987, Aug. 2022, doi: 10.1109/TNNLS.2021.3055240.
[13] "AN 773: Drive-On-Chip Design Example for Intel® MAX® 10 Devices", from Intel Corporation. [Online]. Available:
https://cdrdv2.intel.com/v1/dl/getContent/666779?fileName=an773-683072666779.pdf
[14] J. U. Cho, Q. N. Le and J. W. Jeon, "An FPGA-Based Multiple-Axis Motion Control Chip," in IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 856-870, March 2009, doi: 10.1109/TIE.2008.2004671.
[15] L. Pengfei, H. Yuping, W. Yanbo, Z. Qing and Y. Zelin, "Design of Multi-axis Motion Control and Drive System Based on Internet," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019, pp. 1-6, doi: 10.1109/ICEMS.2019.8921848.
[16] W. Zhang, B. Wang, D. Wang, Q. Liu and S. Qiu, "Design of Multi-Axis Servo Controller Based on MPSoC Architecture," 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), Chengdu, China, 2021,
pp. 1-7, doi: 10.1109/CIYCEE53554.2021.9676801.
[17] S. Jian and Y. Lou, "Application of motion control system for delta parallel robot," 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 2017, pp. 732-736, doi: 10.1109/ICInfA.2017.8079002
[18] E. R. Alphonsus and M. O. Abdullah, "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, vol. 60, pp. 1185-1205, 2016.
[19] "IEC 61131-3", PLCopen for efficiency in automation, [Online]. Available: https://www.plcopen.org/ .
[20] R. Ramanathan, "The IEC 61131-3 programming languages features for industrial control systems," 2014 World Automation Congress (WAC), Waikoloa, HI, USA, 2014, pp. 598-603, doi: 10.1109/WAC.2014.6936062.
[21] "PLCopen", PLCopen for efficiency in automation, [Online]. Available: https://www.plcopen.org/ .
[22] C. -S. Shieh, "Quick implementation of Pule Wise Modulation(PWM), Pulse Frequency Modulation(PFM) and mixed PWM/PFM on FPGA chip," 2020 International Symposium on Computer, Consumer and Control (IS3C), Taichung City, Taiwan, 2020, pp. 444-447, doi: 0.1109/IS3C50286.2020.00120.
[23] Li Kejian, Liu Tong, Cai Qizhong and Yu Ling, "Design of PLC timer system based on FPGA," 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, 2010, pp. V2-197-V2-201,
doi: 10.1109/ICCASM.2010.5619282.
[24] N. Bingham and R. Manohar, "QDI Constant-Time Counters," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 83-91, Jan. 2019, doi: 10.1109/TVLSI.2018.2867289.
[25] L. A. Miller, "The Role of FPGAs in the Push to Modern and Ubiquitous Arrays," in Proceedings of the IEEE, vol. 104, no. 3, pp. 576-585, March 2016, doi: 10.1109/JPROC.2016.2519286.
[26] R. Zamacola, A. Otero, A. García and E. D. La Torre, "An Integrated Approach and Tool Support for the Design of FPGA-Based Multi-Grain Reconfigurable Systems," in IEEE Access, vol. 8, pp. 202133-202152, 2020, doi: 10.1109/ACCESS.2020.3036541.
[27] G. Chen et al., "RippleFPGA: Routability-Driven Simultaneous Packing and Placement for Modern FPGAs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 10, pp. 2022-2035, Oct.
2018, doi: 10.1109/TCAD.2017.2778058.
[28] B. Ronak and S. A. Fahmy, "Mapping for Maximum Performance on FPGA DSP Blocks," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 4, pp. 573-585, April 2016, doi: 10.1109/TCAD.2015.2474363.
[29] Y. Sun, M. Yang, Y. Chen, W. He and D. Xu, "An SoC-based platform for integrated multi-axis motion control and motor drive," 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018, pp. 560-564, doi: 10.23919/IPEC.2018.8507592.
[30] "DE10-Lite Board", from Terasic. [Online]. Available:
https://www.terasic.com.tw/cgibin/page/archive.pl?Language=Taiwan&CategoryNo=235&No=1059 .
[31] " NodeMCU-ESP32-S", from台灣智能感測科技有限公司. [Online]. Available:
https://www.taiwansensor.com.tw/product/nodemcu-esp32-s
%E7%89%A9%E8%81%AF%E7%B6%B2%E9%96%8B%E7%99%BC%E6%9D%BF
wifi%E8%97%8D%E7%89%992%E5%90%881%E9%9B%99%E6%A0%B8cp
u-%E5%87%BA%E8%B2%A8-ch340-usb-%E7%AE%A1/ .
[32] "邏輯分析儀", from金思特電子有限公司. [Online]. Available:
https://item.taobao.com/item.htm?id=20369792793 .
[33] " LA1010 邏輯分析儀", from 德源科技. [Online]. Available:
https://www.ruten.com.tw/item/show?21405303900063 .
[34] 周宏穎, "基於RISC-V的多軸機械手臂的控制系統晶片設計", 資訊工程所, 國立中央 大學, 2024
[35] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. Patterson and K. Asanovic, "The RISC-V instruction set," 2013 IEEE Hot Chips 25 Symposium (HCS), Stanford, CA, USA, 2013, pp. 1-1, doi: 10.1109/HOTCHIPS.2013.7478332.
[36] "PLCopen Editor", PLCopen Editor, [Online]. Available: https://beremiz.org/ .
[37] 鍾頤安, "PLCopen XML 解析器設計及其在機械手臂控制應用", 資訊工程所, 國立中央 大學, 2017.
[38] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems," in IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) , vol., no., pp.1-269, 24 July 2008, doi: 10.1109/IEEESTD.2008.4579760.
[39] C.-H. Chen, M.-Y. Lin, and W.-P. Tew, "Wireless fieldbus networking with precision time synchronization for a low-power WSAN," Microprocessors Microsystems, vol. 90, Apr. 2022, Art. no. 104509.
[40] C.-H. Chen, M.-Y. Lin, Y.-C. Shih, and C.-C. Chen, “High-precision time synchronization chip design for industrial sensor and actuator network,” Microprocessors Microsyst., vol. 91, Jun. 2022, Art. no. 104507.
[41] R. Bairamkulov, E. Friedman, "Synchronization in VLSI. Graphs in VLSI," Springer, 2023, p. 101–147.
指導教授 陳慶瀚 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明