博碩士論文 111423054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.191.239.181
姓名 施佳妏(Jia-Wun Shih)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用Llama 2於產品生產測試案例異常事件要因之預測分析-以桌上型工作站電腦為例
(Applying Llama 2 in Predictive Analysis of Causes for Anomalies in Test Cases of Product Manufacturing Process - A Case Study of Desktop Workstation Computer Products)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 近年來,隨著電腦需求市場的快速變化,產品測試和驗證階段至關重要,以確保產品功能的正常運作。然而,現有的問題追蹤系統在查詢異常問題時僅能使用關鍵字,且搜尋出來的結果需人工逐筆過濾與判斷,導致效率低下且耗費大量時間。在快速發展的人工智慧技術中,生成式AI因其在文字處理上展現了驚人的創造力與對自然語言的理解能力,在醫療、金融等領域被快速採用。然而在過去研究中較少有研究將大型語言模型(Large Language Model, LLM)應用於電腦製造業中,因此本研究將針對電腦產品之測試案例所產生的異常事件,應用LLM建置一個要因預測分析系統,並評估零樣本與少樣本提示工程在回答上的表現,使LLM在電腦產品測試領域中能夠更有效地理解專業知識。該系統將允許測試人員以自然語言提問,系統將生成可能的要因與解決方案,提供測試人員未知或未注意到的觀點和思路,特別是針對較無經驗之新進人員,能夠協助其更快速地識別出問題發生之要因,同時達到組織內部的知識共享。
摘要(英) Product testing and verification have become essential to ensuring the proper functioning of products. However, current issue tracking systems only allow users to employ keywords to query abnormal issues, and results still need to be manually filtered and judged by an expert, leading to low efficiency and taking considerable time. Generative artificial intelligence has been adopted in several industries, including health care and finance, due to its creativity and ability to understand natural language; however, large language models (LLMs), a type of generative artificial intelligence, have not yet been extensively applied in the computer manufacturing industry. The present study implemented Llama 2 to build a cause prediction analysis system that can predict abnormalities in computer products. At the same time, this study evaluates the performance of zero-shot and few-shot prompt engineering to enhance its understanding of domain-specific knowledge. With the LLM, a tester can ask questions using natural language, and the LLM generates possible causes and solutions, providing perspectives and ideas that the tester may be unaware of or have overlooked. The system is especially beneficial for newcomers—it helps them rapidly identify the causes of issues and facilitates knowledge sharing within an organization.
關鍵字(中) ★ 大型語言模型
★ 提示工程
★ 測試案例
★ 異常事件
★ 要因預測分析
關鍵字(英) ★ Large Language Model
★ Prompt Engineering
★ Test Case
★ Abnormality
★ Cause Prediction and Analysis
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
一、 緒論 1
1-1研究背景 1
1-2研究動機 2
1-3研究目的 4
1-4研究範圍 6
1-5研究架構 7
二、 文獻探討 8
2-1要因預測分析(Cause Analysis and Prediction) 8
2-2基於檢索的問答系統 (Retrieval-based Question Answering System) 10
2-3大型語言模型(Large Language Model, LLM) 12
2-4提示工程(Prompt Engineering) 16
三、系統設計 20
3-1系統架構 20
3-2系統設計 21
3-3提示設計 26
四、系統實作與展示 28
4-1系統開發環境 28
4-2系統展示 28
五、系統成果與討論 35
5-1系統成效 35
5-2使用者驗證 37
5-2-1訪談設計 38
5-2-2訪談結果 40
5-2-3問卷設計 45
5-2-4問卷結果 46
5-3與ChatGPT比較分析 47
5-4研究效度驗證 49
六、結論與未來研究方向 52
6-1研究貢獻 52
6-2研究限制與未來研究方向 53
參考文獻 55
參考文獻 1. Abdi, A., Idris, N., & Ahmad, Z. (2018). QAPD: An ontology-based question answering system in the physics domain. Soft Computing, 22(1), 213–230. https://doi.org/10.1007/s00500-016-2328-2
2. Ai, Q., Bai, T., Cao, Z., Chang, Y., Chen, J., Chen, Z., Cheng, Z., Dong, S., Dou, Z., Feng, F., Gao, S., Guo, J., He, X., Lan, Y., Li, C., Liu, Y., Lyu, Z., Ma, W., Ma, J., … Zhu, X. (2023). Information Retrieval meets Large Language Models: A strategic report from Chinese IR community. AI Open, 4, 80–90. https://doi.org/10.1016/j.aiopen.2023.08.001
3. Albayati, H. (2024). Investigating undergraduate students’ perceptions and awareness of using ChatGPT as a regular assistance tool: A user acceptance perspective study. Computers and Education: Artificial Intelligence, 6, 100203. https://doi.org/10.1016/j.caeai.2024.100203
4. Badini, S., Regondi, S., Frontoni, E., & Pugliese, R. (2023). Assessing the capabilities of ChatGPT to improve additive manufacturing troubleshooting. Advanced Industrial and Engineering Polymer Research, 6(3), 278–287. https://doi.org/10.1016/j.aiepr.2023.03.003
5. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2020). Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
6. Ben Abacha, A., & Demner-Fushman, D. (2019). A question-entailment approach to question answering. BMC Bioinformatics, 20(1), 511. https://doi.org/10.1186/s12859-019-3119-4
7. Berengueres, J. (2024). How to Regulate Large Language Models for Responsible AI. IEEE Transactions on Technology and Society, 1–1. https://doi.org/10.1109/TTS.2024.3403681
8. Bo, L., & Lu, J. (2021). Bug Question Answering with Pretrained Encoders. 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 654–660. https://doi.org/10.1109/SANER50967.2021.00083
9. Broniatowski, D. A., & Tucker, C. (2017). Assessing causal claims about complex engineered systems with quantitative data: Internal, external, and construct validity. Systems Engineering, 20(6), 483–496. https://doi.org/10.1002/sys.21414
10. Carmines, E. G., & Zeller, R. A. (1979). Reliability and Validity Assessment. SAGE Publications.
11. Catolino, G., Palomba, F., Zaidman, A., & Ferrucci, F. (2019). Not All Bugs Are the Same: Understanding, Characterizing, and Classifying the Root Cause of Bugs (arXiv:1907.11031). arXiv. https://doi.org/10.48550/arXiv.1907.11031
12. Chalkoo, S. M., & Ghafir, S. (2021). Challenges of Data Protection and Security in Cloud Computing. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3879599
13. Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q., & Xie, X. (2024). A Survey on Evaluation of Large Language Models. ACM Transactions on Intelligent Systems and Technology , 15(3). https://doi.org/10.1145/3641289
14. Chen, B., Zhang, Z., Langrené, N., & Zhu, S. (2023). Unleashing the potential of prompt engineering in Large Language Models: A comprehensive review (arXiv:2310.14735). arXiv. https://doi.org/10.48550/arXiv.2310.14735
15. Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., … Zaremba, W. (2021). Evaluating Large Language Models Trained on Code (arXiv:2107.03374). arXiv. https://doi.org/10.48550/arXiv.2107.03374
16. Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501–521. https://doi.org/10.1007/s10845-008-0145-x
17. Chrysler Corporation (Ed.). (2008). Advanced product quality planning (APQP) and control plan: Reference manual (2. ed). AIAG.
18. Cimiano, P., Unger, C., & McCrae, J. (2022). Ontology-Based Interpretation of Natural Language. Springer Nature.
19. Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., & Tafjord,
. (2018). Think you have solved question answering? try arc, the ai2 reasoning challenge. (arXiv:1803.05457). arXiv. https://arxiv.org/abs/1803.05457
20. Cui, J., Li, Z., Yan, Y., Chen, B., & Yuan, L. (2023). ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases (arXiv:2306.16092). arXiv. https://doi.org/10.48550/arXiv.2306.16092
21. Darke, P., Shanks, G., & Broadbent, M. (1998). Successfully completing case study research: Combining rigour, relevance and pragmatism. Information Systems Journal, 8(4), 273–289. https://doi.org/10.1046/j.1365-2575.1998.00040.x
22. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
23. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. http://arxiv.org/abs/1810.04805
24. Do, T. T. H., Dobler, M., & Kühl, N. (2021). What to Prioritize? Natural Language Processing for the Development of a Modern Bug Tracking Solution in Hardware Development (arXiv:2109.13825). arXiv. https://doi.org/10.48550/arXiv.2109.13825
25. Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C., & Sillito, J. (2011). Qualitative research in software engineering. Empirical Software Engineering, 16(4), 425–429. https://doi.org/10.1007/s10664-011-9163-y
26. Feng, S., & Chen, C. (2023). Prompting Is All You Need: Automated Android Bug Replay with Large Language Models (arXiv:2306.01987). arXiv. https://doi.org/10.48550/arXiv.2306.01987
27. Fernandes, P., Madaan, A., Liu, E., Farinhas, A., Martins, P. H., Bertsch, A., De Souza, J. G. C., Zhou, S., Wu, T., Neubig, G., & Martins, A. F. T. (2023). Bridging the Gap: A Survey on Integrating (Human) Feedback for Natural Language Generation. Transactions of the Association for Computational Linguistics, 11, 1643–1668. https://doi.org/10.1162/tacl_a_00626
28. Floridi, L., & Chiriatti, M. (2020). GPT-3: Its Nature, Scope, Limits, and Consequences. Minds and Machines, 30(4), 681–694. https://doi.org/10.1007/s11023-020-09548-1
29. Frosolini, A., Gennaro, P., Cascino, F., & Gabriele, G. (2023). In Reference to “Role of Chat GPT in Public Health”, to Highlight the AI’s Incorrect Reference Generation. Annals of Biomedical Engineering, 51(10), 2120–2122. https://doi.org/10.1007/s10439-023-03248-4
30. Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster, C., ... & Zou, A. (2021).
i. A framework for few-shot language model evaluation. Version v0. 0.1. Sept, 8.
31. Ghimire, A., Prather, J., & Edwards, J. (2024). Generative AI in Education: A Study of Educators’ Awareness, Sentiments, and Influencing Factors (arXiv:2403.15586). arXiv. https://doi.org/10.48550/arXiv.2403.15586
32. Goyal, T., Li, J. J., & Durrett, G. (2023). News Summarization and Evaluation in the Era of GPT-3 (arXiv:2209.12356). arXiv. http://arxiv.org/abs/2209.12356
33. Gu, J., Han, Z., Chen, S., Beirami, A., He, B., Zhang, G., Liao, R., Qin, Y., Tresp, V., & Torr, P. (2023). A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models (arXiv:2307.12980). arXiv. http://arxiv.org/abs/2307.12980
34. Gupta, P., & Gupta, V. (2012). A Survey of Text Question Answering Techniques. International Journal of Computer Applications, 53, 1–8. https://doi.org/10.5120/8406-2030
35. Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
36. Hamade, H. (2021). Leadership Styles of Millennials and Organizational Effectiveness in Business Consulting Organizations in Lebanon (Doctoral dissertation). Walden University, Minneapolis.
37. He, Z., Bhasuran, B., Jin, Q., Tian, S., Hanna, K., Shavor, C., Arguello, L. G., Murray, P., & Lu, Z. (2024). Quality of Answers of Generative Large Language Models vs Peer Patients for Interpreting Lab Test Results for Lay Patients: Evaluation Study. Journal of Medical Internet Research, 26, e56655. https://doi.org/10.2196/56655
38. Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J.
i. (2020). Measuring massive multitask language understanding. (arXiv:2009.03300). arXiv. https://arxiv.org/abs/2009.03300
39. Jiao, W., Wang, W., Huang, J., Wang, X., Shi, S., & Tu, Z. (2023). Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine (arXiv:2301.08745). arXiv. https://doi.org/10.48550/arXiv.2301.08745
40. Joshi, A., Kale, S., Chandel, S., & Pal, D. (2015). Likert Scale: Explored and Explained. British Journal of Applied Science & Technology, 7(4), 396–403. https://doi.org/10.9734/BJAST/2015/14975
41. Jozsef, B., & Blaga, P. (2014). Production Quality Control in the Process of Coating in an Electrostatic Field. Procedia Technology, 12, 476–482. https://doi.org/10.1016/j.protcy.2013.12.517
42. Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R. (2023). Challenges and Applications of Large Language Models (arXiv:2307.10169). arXiv. http://arxiv.org/abs/2307.10169
43. Kapočiūtė-Dzikienė, J. (2020). A Domain-Specific Generative Chatbot Trained from Little Data. Applied Sciences, 10(7), Article 7. https://doi.org/10.3390/app10072221
44. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003
45. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2023). Large Language Models are Zero-Shot Reasoners (arXiv:2205.11916). arXiv. https://doi.org/10.48550/arXiv.2205.11916
46. Kolomiyets, O., & Moens, M.-F. (2011). A survey on question answering technology from an information retrieval perspective. Information Sciences, 181(24), 5412–5434. https://doi.org/10.1016/j.ins.2011.07.047
47. Konys, A. (2015). Knowledge-Based Approach to Question Answering System Selection. In M. Núñez, N. T. Nguyen, D. Camacho, & B. Trawiński (Eds.), Computational Collective Intelligence (pp. 361–370). Springer International Publishing. https://doi.org/10.1007/978-3-319-24069-5_34
48. Kusiak, A., & Kurasek, C. (2001). Data mining of printed-circuit board defects. IEEE Transactions on Robotics and Automation, 17(2), 191–196. https://doi.org/10.1109/70.928564
49. Lahitani, A. R., Permanasari, A. E., & Setiawan, N. A. (2016). Cosine similarity to determine similarity measure: Study case in online essay assessment. 2016 4th International Conference on Cyber and IT Service Management, 1–6. https://doi.org/10.1109/CITSM.2016.7577578
50. Lakkaraju, H., Slack, D., Chen, Y., Tan, C., & Singh, S. (2022). Rethinking Explainability as a Dialogue: A Practitioner’s Perspective (arXiv:2202.01875). arXiv. https://doi.org/10.48550/arXiv.2202.01875
51. Lal, H., & Pahwa, G. (2017). Root cause analysis of software bugs using machine learning techniques. 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, 105–111. https://doi.org/10.1109/CONFLUENCE.2017.7943132
52. Law, P.-M., Lo, L. Y.-H., Endert, A., Stasko, J., & Qu, H. (2021). Causal Perception in Question-Answering Systems. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–15. https://doi.org/10.1145/3411764.3445444
53. Lee, D.-G., & Seo, Y.-S. (2020). Improving bug report triage performance using artificial intelligence based document generation model. Human-Centric Computing and Information Sciences, 10(1), 26. https://doi.org/10.1186/s13673-020-00229-7
54. Lee, J., Kao, H.-A., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3–8. https://doi.org/10.1016/j.procir.2014.02.001
55. Lee, S. G., & Ng, Y. C. (2006). Hybrid case-based reasoning for on-line product fault diagnosis. The International Journal of Advanced Manufacturing Technology, 27(7), 833–840. https://doi.org/10.1007/s00170-004-2235-z
56. Li, B., Mellou, K., Zhang, B., Pathuri, J., & Menache, I. (2023). Large Language Models for Supply Chain Optimization (arXiv:2307.03875). arXiv. https://doi.org/10.48550/arXiv.2307.03875
57. Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago, A., Hubert, T., Choy, P., de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal, S., Cherepanov, A., … Vinyals, O. (2022). Competition-level code generation with AlphaCode. Science, 378(6624), 1092–1097. https://doi.org/10.1126/science.abq1158
58. Liang, Z., Lang, Z., & Jia-Jun, C. (2007). Structure Analysis and Computation-Based Chinese Question Classification. Sixth International Conference on Advanced Language Processing and Web Information Technology (ALPIT 2007), 39–44. https://doi.org/10.1109/ALPIT.2007.52
59. Ling, C., Zhao, X., Lu, J., Deng, C., Zheng, C., Wang, J., Chowdhury, T., Li, Y., Cui, H., Zhao, T., Panalkar, A., Cheng, W., Wang, H., Liu, Y., Chen, Z., Chen, H., White, C., Gu, Q., Yang, C., & Zhao, L. (2023). Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey (arXiv: 2305.18703). arXiv. http://arxiv.org/abs/2305.18703
60. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., & Chen, W. (2021). What Makes Good In-Context Examples for GPT-3? (arXiv:2101.06804). arXiv. http://arxiv.org/abs/2101.06804
61. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing. ACM Computing Surveys, 55(9), 1–35. https://doi.org/10.1145/3560815
62. Lokrantz, A., Gustavsson, E., & Jirstrand, M. (2018). Root cause analysis of failures and quality deviations in manufacturing using machine learning. Procedia CIRP, 72, 1057–1062. https://doi.org/10.1016/j.procir.2018.03.229
63. Lu, J., Sun, X., Li, B., Bo, L., & Zhang, T. (2021). BEAT: Considering question types for bug question answering via templates. Knowledge-Based Systems, 225, 107098. https://doi.org/10.1016/j.knosys.2021.107098
64. Luo, Z., Xie, Q., & Ananiadou, S. (2023). ChatGPT as a Factual Inconsistency Evaluator for Text Summarization (arXiv:2303.15621). arXiv. http://arxiv.org/abs/2303.15621
65. Manning, C., Raghavan, P., & Schuetze, H. (2009). Introduction to Information Retrieval. Cambridge university press
66. Maropoulos, P. G., & Ceglarek, D. (2010). Design verification and validation in product lifecycle. CIRP Annals, 59(2), 740–759. https://doi.org/10.1016/j.cirp.2010.05.005
67. Martinez-Gil, J. (2023). A survey on legal question–answering systems. Computer Science Review, 48, 100552. https://doi.org/10.1016/j.cosrev.2023.100552
68. Mishra, A., & Jain, S. K. (2016). A survey on question answering systems with classification. Journal of King Saud University - Computer and Information Sciences, 28(3), 345–361. https://doi.org/10.1016/j.jksuci.2014.10.007
69. Mohammadnazar, H., Pulkkinen, M., & Ghanbari, H. (2019). A root cause analysis method for preventing erratic behavior in software development: PEBA. Reliability Engineering & System Safety, 191, 106565. https://doi.org/10.1016/j.ress.2019.106565
70. Moldovan, D., Paşca, M., Harabagiu, S., & Surdeanu, M. (2003). Performance issues and error analysis in an open-domain question answering system. ACM Transactions on Information Systems, 21(2), 133–154. https://doi.org/10.1145/763693.763694
71. Mutabazi, E., Ni, J., Tang, G., & Cao, W. (2021). A Review on Medical Textual Question Answering Systems Based on Deep Learning Approaches. Applied Sciences, 11(12), Article 12. https://doi.org/10.3390/app11125456
72. Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research: Examining the craft. Information and Organization, 17(1), 2–26. https://doi.org/10.1016/j.infoandorg.2006.11.001
73. Nagwani, N. K., & Suri, J. S. (2023). An artificial intelligence framework on software bug triaging, technological evolution, and future challenges: A review. International Journal of Information Management Data Insights, 3(1), 100153. https://doi.org/10.1016/j.jjimei.2022.100153
74. Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: A state-of-the-art literature review. Computers & Operations Research, 98, 254–264. https://doi.org/10.1016/j.cor.2017.07.004
75. Pichai, S. (2023, February 6). An important next step on our AI journey. Google. https://blog.google/technology/ai/bard-google-ai-search-updates/
76. Pudaruth, S., Boodhoo, K., & Goolbudun, L. (2016). An intelligent question answering system for ICT. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2895–2899. https://doi.org/10.1109/ICEEOT.2016.7755228
77. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training.
78. Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson, S., Ring, R., Young, S., Rutherford, E., Hennigan, T., Menick, J., Cassirer, A., Powell, R., Driessche, G. van den, Hendricks, L. A., Rauh, M., Huang, P.-S., … Irving, G. (2022). Scaling Language Models: Methods, Analysis & Insights from Training Gopher (arXiv:2112.11446). arXiv. https://doi.org/10.48550/arXiv.2112.11446
79. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2023). Exploring the limits of transfer learning with a unified text-to-text transformer (arXiv:1910.10683).arXiv. https://arxiv.org/abs/1910.10683
80. Rahutomo, F., Kitasuka, T., & Aritsugi, M. (2012). Semantic Cosine Similarity.
81. Rammal, A., Ezukwoke, K., Hoayek, A., & Batton-Hubert, M. (2023). Root cause prediction for failures in semiconductor industry, a genetic algorithm–machine learning approach. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-30769-8
82. Ray, S. K., Singh, S., & Joshi, B. P. (2010). A semantic approach for question classification using WordNet and Wikipedia. Pattern Recognition Letters, 31(13), 1935–1943. https://doi.org/10.1016/j.patrec.2010.06.012
83. Ryan, T. P. (2011). Statistical Methods for Quality Improvement. John Wiley & Sons.
84. Sakaguchi, K., Bras, R. L., Bhagavatula, C., & Choi, Y. (2021). Winogrande: An
i. adversarial winograd schema challenge at scale. Communications of the ACM, 64(9), 99-106.
85. Shin, S. Y., Nejati, S., Sabetzadeh, M., Briand, L. C., & Zimmer, F. (2018). Test case prioritization for acceptance testing of cyber physical systems: A multi-objective search-based approach. Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis, 49–60. https://doi.org/10.1145/3213846.3213852
86. Shrouti, C., Franciosa, P., & Ceglarek, D. (2013). Root Cause Analysis of Product Service Failure Using Computer Experimentation Technique. Procedia CIRP, 11, 44–49. https://doi.org/10.1016/j.procir.2013.07.069
87. Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H., Pfohl, S., Payne, P., Seneviratne, M., Gamble, P., Kelly, C., Babiker, A., Schärli, N., Chowdhery, A., Mansfield, P., Demner-Fushman, D., … Natarajan, V. (2023). Large language models encode clinical knowledge. Nature, 620(7972), Article 7972. https://doi.org/10.1038/s41586-023-06291-2
88. Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Hou, L., Clark, K., Pfohl, S., Cole-Lewis, H., Neal, D., Schaekermann, M., Wang, A., Amin, M., Lachgar, S., Mansfield, P., Prakash, S., Green, B., Dominowska, E., Arcas, B. A. y, … Natarajan, V. (2023). Towards Expert-Level Medical Question Answering with Large Language Models (arXiv:2305.09617). arXiv. https://doi.org/10.48550/arXiv.2305.09617
89. Sun, Z. (2023). A Short Survey of Viewing Large Language Models in Legal Aspect (arXiv:2303.09136). arXiv. https://doi.org/10.48550/arXiv.2303.09136
90. Svendsen, G. B., Johnsen, J.-A. K., Almås-Sørensen, L., & Vittersø, J. (2013). Personality and technology acceptance: The influence of personality factors on the core constructs of the Technology Acceptance Model. Behaviour & Information Technology, 32(4), 323–334. https://doi.org/10.1080/0144929X.2011.553740
91. Tang, Q., & Jung, H. (2023). Reliable Anomaly Detection and Localization System: Implications on Manufacturing Industry. IEEE Access, 11, 114613–114622. https://doi.org/10.1109/ACCESS.2023.3324314
92. Thalib, I., Widyawan, & Soesanti, I. (2020). A Review on Question Analysis, Document Retrieval and Answer Extraction Method in Question Answering System. 2020 International Conference on Smart Technology and Applications (ICoSTA), 1–5. https://doi.org/10.1109/ICoSTA48221.2020.1570614175
93. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., … Scialom, T. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models (arXiv:2307.09288). arXiv. https://doi.org/10.48550/arXiv.2307.09288
94. Trischler, A., Wang, T., Yuan, X., Harris, J., Sordoni, A., Bachman, P., & Suleman, K. (2017). NewsQA: A Machine Comprehension Dataset (arXiv:1611.09830). arXiv. http://arxiv.org/abs/1611.09830
95. Tsvetkov, Y. (2017). Opportunities and Challenges in Working with Low-Resource Languages. CMU, Slides Part-1.
96. Uddin, J., Ghazali, R., Deris, M. M., Naseem, R., & Shah, H. (2017). A survey on bug prioritization. Artificial Intelligence Review, 47(2), 145–180. https://doi.org/10.1007/s10462-016-9478-6
97. Van Buren, D. (2023). Guided scenarios with simulated expert personae: A remarkable strategy to perform cognitive work (arXiv:2306.03104). arXiv. http://arxiv.org/abs/2306.03104
98. Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
99. Wang, H., Liu, M., & Shen, W. (2023). Industrial-generative pre-trained transformer for intelligent manufacturing systems. IET Collaborative Intelligent Manufacturing, 5(2), e12078. https://doi.org/10.1049/cim2.12078
100. Wang, J., Shi, E., Yu, S., Wu, Z., Ma, C., Dai, H., Yang, Q., Kang, Y., Wu, J., Hu, H., Yue, C., Zhang, H., Liu, Y., Li, X., Ge, B., Zhu, D., Yuan, Y., Shen, D., Liu, T., & Zhang, S. (2023). Prompt Engineering for Healthcare: Methodologies and Applications (arXiv:2304.14670). arXiv. https://doi.org/10.48550/arXiv.2304.14670
101. Wang, S., Liu, Y., Xu, Y., Zhu, C., & Zeng, M. (2021). Want To Reduce Labeling Cost? GPT-3 Can Help (arXiv:2108.13487). arXiv. http://arxiv.org/abs/2108.13487
102. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q. V., & Zhou, D. (2022). Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Advances in Neural Information Processing Systems, 35, 24824–24837.
103. Wu, S., Irsoy, O., Lu, S., Dabravolski, V., Dredze, M., Gehrmann, S., Kambadur, P., Rosenberg, D., & Mann, G. (2023). BloombergGPT: A Large Language Model for Finance (arXiv:2303.17564). arXiv. https://doi.org/10.48550/arXiv.2303.17564
104. Wu, T., Terry, M., & Cai, C. J. (2022). AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts. CHI Conference on Human Factors in Computing Systems, 1–22. https://doi.org/10.1145/3491102.3517582
105. Wu, Y., Henriksson, A., Duneld, M., & Nouri, J. (2023). Towards Improving the Reliability and Transparency of ChatGPT for Educational Question Answering. In O. Viberg, I. Jivet, P. J. Muñoz-Merino, M. Perifanou, & T. Papathoma (Eds.), Responsive and Sustainable Educational Futures (pp. 475–488). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-42682-7_32
106. Xingguang, L., Zhenbo, C., Zhengyuan, S., Haoxin, Z., Hangcheng, M., Xuesong, X., & Gang, X. (2022). Building a Question Answering System for the Manufacturing Domain. IEEE Access, 10, 75816–75824. https://doi.org/10.1109/ACCESS.2022.3191678
107. Xu, Z., Dang, Y., & Munro, P. (2018). Knowledge-driven intelligent quality problem-solving system in the automotive industry. Advanced Engineering Informatics, 38, 441–457. https://doi.org/10.1016/j.aei.2018.08.013
108. Yang, H., Liu, X.-Y., & Wang, C. D. (2023). FinGPT: Open-Source Financial Large Language Models (arXiv:2306.06031). arXiv. https://doi.org/10.48550/arXiv.2306.06031
109. Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., & Hu, X. (2023). Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond (arXiv:2304.13712). arXiv. http://arxiv.org/abs/2304.13712
110. Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, E., & Zhang, Y. (2023). A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly. (arXiv:2312.02003). arXiv. https://arxiv.org/abs/2312.02003
111. Yu, W., Wu, L., Deng, Y., Mahindru, R., Zeng, Q., Guven, S., & Jiang, M. (2020). A Technical Question Answering System with Transfer Learning. In Q. Liu & D. Schlangen (Eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (pp. 92–99). Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.emnlp-demos.13
112. Yuniarto, H. A. (2012). The Shortcomings of Existing Root Cause Analysis Tools.
113. Zamfirescu-Pereira, J. D., Wong, R. Y., Hartmann, B., & Yang, Q. (2023). Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design LLM Prompts. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–21. https://doi.org/10.1145/3544548.3581388
114. Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., & Choi, Y. (2019). Hellaswag: Can a
i. machine really finish your sentence?. (arXiv:1905.07830). arXiv. https://arxiv.org/abs/1905.07830
115. Zhang, K., Yu, J., Adhikarla, E., Zhou, R., Yan, Z., Liu, Y., Liu, Z., He, L., Davison, B., Li, X., Ren, H., Fu, S., Zou, J., Liu, W., Huang, J., Chen, C., Zhou, Y., Liu, T., Chen, X., … Sun, L. (2024). BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks (arXiv:2305.17100). arXiv. https://doi.org/10.48550/arXiv.2305.17100
116. Zhang, T., Jiang, H., Luo, X., & Chan, A. T. S. (2016). A Literature Review of Research in Bug Resolution: Tasks, Challenges and Future Directions. The Computer Journal, 59(5), 741–773. https://doi.org/10.1093/comjnl/bxv114
117. Zhao, H., Chen, H., Yang, F., Liu, N., Deng, H., Cai, H., Wang, S., Yin, D., & Du, M. (2024). Explainability for Large Language Models: A Survey. ACM Transactions on Intelligent Systems and Technology, 15(2), 1–38. https://doi.org/10.1145/3639372
118. Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., … Wen, J.-R. (2023). A Survey of Large Language Models (arXiv:2303.18223). arXiv. http://arxiv.org/abs/2303.18223
119. Zhou, Z., Li, L., Chen, X., & Li, A. (2023). Mini-Giants: “Small” Language Models and Open Source Win-Win (arXiv:2307.08189). arXiv. http://arxiv.org/abs/2307.08189
120. Zimmermann, T., Premraj, R., Bettenburg, N., Just, S., Schroter, A., & Weiss, C. (2010). What Makes a Good Bug Report? IEEE Transactions on Software Engineering, 36(5), 618–643. https://doi.org/10.1109/TSE.2010.63
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2024-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明