博碩士論文 111423042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.15.25.44
姓名 黃文昕(Wen-Hsin Huang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 網路購物詐欺偵測系統:結合社群網路行為的方法
(Detection for Online Shopping Fraud System: Combining Social Network Behavior Approach)
相關論文
★ 以機器學習技術為基礎建構新生兒孕育健康狀態預測模型★ 電子病歷縮寫消歧與一對多分類任務
★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型★ 精準社群廣告投資策略:以機器學習技術為基礎之社會影響力管理模式
★ 智慧活躍老化之實現:以資料驅動為基礎之AI長者在地交友推薦模式★ 整合深度學習技術與SOR理論之資訊情緒傳遞性探索:新聞生成特質與資訊情感傳播行為
★ 基於混合過濾的電影推薦系統★ 以 Reddit 使用者生成內容探討糖尿病照護社會支持
★ 防範於未然:基於機器學習技術之網路入侵偵測系統★ 可靠度驗證實驗室導入人工智慧技術的可行性探討 -以A公司為例
★ 智慧共同照護之實現: 以資料驅動為基礎之 AI 糖尿病個案管理模式★ Non-Touch Cooperation: An Interactive Mechanism Design Based on Mid-Air Gestures
★ 基於 UGC 的反脆弱社交口碑策略:以臺灣飯店業為例★ 基於機器學習技術之誘導式評論過濾機制:以餐廳評論為例
★ 資料驅動的球隊經營:NBA球隊競爭力與抱團策略之研究★ 基於顧客評論觀點揭示組織調整策略和顧客體驗 優化:以 Covid-19 餐飲業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 網路的興起,電子商務與社群商務開始發展,然而大量的商機中隱藏了巨量的詐欺交易事件。隨著COVID-19的期間,許多人開始習慣於網路上進行電子商務交易,其中如何準確地評估商家以進行交易十分重要。有些詐騙商家透過社會影響力欺瞞潛在客戶,透過虛假評論影響客戶的選擇。此研究利用社交網路分析和圖神經網路以偵測虛假評論,藉由評論者之間關聯程度,創建社交網路關係圖,利用圖神經網路創建預測詐欺交易的虛假評論偵測系統。本研究中使用評論的時間、星等以及評論者資訊創建社交網路關係圖,並使用兩種以上的標籤方式標記電子商務詐欺類別,及早識別詐欺現象以中斷詐欺交易鏈。研究中使用Amazon以及Yelp資料集評論,總資料集為Amazon 2338637筆、Yelp 67395筆。圖神經網路模型準確度為87%、73%於兩種不同的標籤模型方法。採用Yelp資料集特徵,評估社交影響力於社群商務上的影響力,證實社交影響力89%影響社群商務決策。在社群媒體以及網際網路蓬勃發展的時代,此研究結果證實社交影響力之於社群商務之影響、虛假評論偵測系統可有效偵測虛假評論,該研究實現更安全的電子交易環境,減少詐欺交易的發生。
摘要(英) With the rise of the internet, e-commerce and social commerce have flourished. There is a significant number of fraudulent transactions. During COVID-19, many people became accustomed to online e-commerce, making it crucial to accurately assess merchants before engaging in transactions. Some fraudulent sellers use social influence to deceive potential customers by posting fake reviews to sway their choices. This research employs social network analysis and graph neural networks (GNNs) to detect fraudulent reviews. A social network graph is created to predict fraudulent transactions by analyzing the relationships among reviewers. The study uses review timing, star ratings, and reviewer information to construct the social network graph, applying multiple labeling methods to categorize e-commerce fraud types. The datasets used include reviews from Amazon and Yelp, totaling 2,338,637 and 67,395 reviews, respectively. The GNN model achieved 87% and 73% accuracy using two different labeling methods. By leveraging features from the Yelp dataset, the study evaluates the impact of social influence on social commerce, demonstrating that social influence affects 89% of social commerce decisions. In an era of rapid social media and internet growth, this research confirms the significant impact of social influence on social commerce. The fraudulent review detection system effectively identifies fake reviews, contributing to a safer e-commerce environment and reducing fraudulent transactions.
關鍵字(中) ★ 電子商務
★ 社群商務
★ 詐欺偵測
★ 圖神經網路
★ 社群網路分析
★ 社會影響力
關鍵字(英) ★ E-commerce
★ Social Commerce
★ Fraud Detection
★ Graph Neural Networks
★ Social Network Analysis
★ Social Influence
論文目次 摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
I. Introduction 1
1-1 Research Background 1
1-2 Research Motivation 3
1-3 Research Objectives 5
1-4 Research Structure 7
II. Literature Review 9
2-1 E-commerce and Social Commerce 10
2-2 Social Network Analysis(SNA) 15
2-3 Social Influence(SI) 17
2-4 Graph Neural Network (GNN) 19
III. Methodology 21
3-1 Research Design 21
3-2 Data Collection 25
3-3 Data Preprocessing 29
3-4 Data Processing 34
3-5 Data Analysis 38
3-6 Evaluation 41
IV. Research Experiment 44
4-1 Experiment 1: Model and graph neural network 44
4-2 Experiment 2: Social Influence on Reviews 47
V. Research Result and Discussion 49
5-1 Two-Way Labeling Analysis and Fraud Detection System 49
5-2 Social Influence Analysis on Reviews Result 54
5-3 Discussion 56
VI. Research Conclusion and Contribution 58
6-1 Conclusion 58
6-2 Research Limitations and Future Directions 60
References 62
參考文獻 Al-maaitah, T. A., Tha’er Majali, M. A., & Almaaitah, D. A. (2021). The impact of COVID-19 on the electronic commerce users′ behavior. Journal of Contemporary Issues in Business and Government Vol, 27(1).
Alavijeh, Z. Z. (2015). The application of link mining in social network analysis. Advances in Computer Science: An International Journal, 4(3), 64-69.
Aral, S., & Walker, D. (2014). Tie strength, embeddedness, and social influence: A large-scale networked experiment. Management Science, 60(6), 1352-1370.
Argyris, Y. A., Wang, Z., Kim, Y., & Yin, Z. (2020). The effects of visual congruence on increasing consumers’ brand engagement: An empirical investigation of influencer marketing on Instagram using deep-learning algorithms for automatic image classification. Computers in Human Behavior, 112, 106443.
Arndt, A. D., Karande, K., & Glassman, M. (2016). How context interferes with similarity-attraction between customers and service providers. Journal of Retailing and Consumer Services, 31, 294-303.
Baesens, B., Höppner, S., & Verdonck, T. (2021). Data engineering for fraud detection. Decision Support Systems, 150, 113492.
Banerjee, A. V. (1992). A simple model of herd behavior. The quarterly journal of economics, 107(3), 797-817.
Batista, A. T. A., Figueiredo, K. T., & Goldschmidt, R. R. (2021). Fraud Detection in Social Commerce: combining structured attributes and images. XVII Brazilian Symposium on Information Systems,
Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., & Qi, Y. (2019). Titant: Online real-time transaction fraud detection in ant financial. arXiv preprint arXiv:1906.07407.
Carta, S., Fenu, G., Recupero, D. R., & Saia, R. (2019). Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model. Journal of Information Security and Applications, 46, 13-22.
Chen, J., Chen, Q., Jiang, F., Guo, X., Sha, K., & Wang, Y. (2024). SCN_GNN: A GNN-based fraud detection algorithm combining strong node and graph topology information. Expert systems with applications, 237, 121643.
Chen, Y., & Xie, J. (2008). Online consumer review: Word-of-mouth as a new element of marketing communication mix. Management Science, 54(3), 477-491.
Cheng, L.-C., Hu, H.-W., & Wu, C.-C. (2021). Spammer group detection using machine learning technology for observation of new spammer behavioral features. Journal of Global Information Management (JGIM), 29(2), 61-76.
Cheng, L.-C., Wu, Y. T., Chao, C.-T., & Wang, J.-H. (2024). Detecting fake reviewers from the social context with a graph neural network method. Decision Support Systems, 179, 114150.
Cheung, M., She, J., & Liu, L. (2018). Deep learning-based online counterfeit-seller detection. IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Cheung, M., She, J., Sun, W., & Zhou, J. (2019). Detecting online counterfeit-goods seller using connection discovery. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 15(2), 1-16.
Chiu, C., Ku, Y., Lie, T., & Chen, Y. (2011). Internet auction fraud detection using social network analysis and classification tree approaches. International Journal of Electronic Commerce, 15(3), 123-147.
Deng, H., Wang, W., & Lim, K. H. (2022). Repairing Integrity-based Trust Violations In Ascription Disputes For Potential E-commerce Customers. MIS Quarterly, 46(4).
Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., & Yu, P. S. (2020). Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. Proceedings of the 29th ACM international conference on information & knowledge management,
Elshaar, S., & Sadaoui, S. (2020). Semi-supervised classification of fraud data in commercial auctions. Applied Artificial Intelligence, 34(1), 47-63.
Godes, D., Mayzlin, D., Chen, Y., Das, S., Dellarocas, C., Pfeiffer, B., Libai, B., Sen, S., Shi, M., & Verlegh, P. (2005). The firm′s management of social interactions. Marketing letters, 16, 415-428.
Gruzd, A., & Haythornthwaite, C. (2011). Networking online: cybercommunities. In (pp. 167-179): SAGE Publications Ltd.
Guo, Q., Li, Z., An, B., Hui, P., Huang, J., Zhang, L., & Zhao, M. (2019). Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach. The world wide web conference,
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
Higueras-Castillo, E., Liébana-Cabanillas, F. J., & Villarejo-Ramos, Á. F. (2023). Intention to use e-commerce vs physical shopping. Difference between consumers in the post-COVID era. Journal of Business Research, 157, 113622.
Jhangiani, R., Bein, D., & Verma, A. (2019). Machine learning pipeline for fraud detection and prevention in e-commerce transactions. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
Li, A., Qin, Z., Liu, R., Yang, Y., & Li, D. (2019). Spam review detection with graph convolutional networks. Proceedings of the 28th ACM International conference on information and knowledge management,
Li, Q., He, Y., Xu, C., Wu, F., Gao, J., & Li, Z. (2022). Dual-Augment Graph Neural Network for Fraud Detection. Proceedings of the 31st ACM International Conference on Information & Knowledge Management,
Li, X. (2017). Revealing or Non-Revealing. MIS Quarterly, 41(4), 1335-1346.
Li, Z., Song, J., Hu, S., Ruan, S., Zhang, L., Hu, Z., & Gao, J. (2019). Fair: Fraud aware impression regulation system in large-scale real-time e-commerce search platform. 2019 IEEE 35th international conference on data engineering (ICDE),
Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., & He, Q. (2021). Pick and choose: a GNN-based imbalanced learning approach for fraud detection. Proceedings of the web conference 2021,
Luo, J., Luo, J., Nan, G., & Li, D. (2023). Fake review detection system for online E-commerce platforms: A supervised general mixed probability approach. Decision Support Systems, 175, 114045.
McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: understanding rating dimensions with review text. Proceedings of the 7th ACM conference on Recommender systems,
McAuley, J. J., & Leskovec, J. (2013). From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. Proceedings of the 22nd international conference on World Wide Web,
Nguyen, V.-H., Sugiyama, K., Nakov, P., & Kan, M.-Y. (2020). Fang: Leveraging social context for fake news detection using graph representation. Proceedings of the 29th ACM international conference on information & knowledge management,
Paredes-Corvalan, D., Pezoa-Fuentes, C., Silva-Rojas, G., Rojas, I. V., & Castillo-Vergara, M. (2023). Engagement of the E-Commerce Industry in the US, According to Twitter in the Period of the COVID-19 Pandemic. Heliyon.
Peng, H., Zhang, R., Dou, Y., Yang, R., Zhang, J., & Yu, P. S. (2021). Reinforced neighborhood selection guided multi-relational graph neural networks. ACM Transactions on Information Systems (TOIS), 40(4), 1-46.
Qandos, N., Hamad, G., Alharbi, M., Alturki, S., Alharbi, W., & Albelaihi, A. A. (2024). Multiscale cascaded domain-based approach for Arabic fake reviews detection in e-commerce platforms. Journal of King Saud University-Computer and Information Sciences, 36(2), 101926.
Raghavan, P., & El Gayar, N. (2019). Fraud detection using machine learning and deep learning. 2019 international conference on computational intelligence and knowledge economy (ICCIKE),
Rao, R. S., & Pais, A. R. (2019). Jail-Phish: An improved search engine based phishing detection system. Computers & Security, 83, 246-267.
Resnick, P., & Zeckhauser, R. (2002). Trust among strangers in Internet transactions: Empirical analysis of eBay′s reputation system. In The Economics of the Internet and E-commerce (pp. 127-157). Emerald Group Publishing Limited.
Rueger, J., Dolfsma, W., & Aalbers, R. (2023). Mining and analysing online social networks: Studying the dynamics of digital peer support. MethodsX, 10, 102005.
Saeidi, S., & Baradari, Z. (2023). Examining the correlation between metrics in the Instagram social network to identify fake pages and improve marketing. Computers in Human Behavior Reports, 12, 100341.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE transactions on neural networks, 20(1), 61-80.
Sheikhi, S. (2021). An effective fake news detection method using WOA-xgbTree algorithm and content-based features. Applied Soft Computing, 109, 107559.
Song, Y., Escobar, O., Arzubiaga, U., & De Massis, A. (2022). The digital transformation of a traditional market into an entrepreneurial ecosystem. Review of Managerial Science, 1-24.
Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., & Zhao, Z. (2023). Identifying performance anomalies in fluctuating cloud environments: A robust correlative-GNN-based explainable approach. Future Generation Computer Systems, 145, 77-86.
Sun, X., Zhang, Y., & Feng, J. (2024). Impact of online information on the pricing and profits of firms with different levels of brand reputation. Information & Management, 61(1), 103882.
Wang, H., Du, R., Shen, W., Qiu, L., & Fan, W. (2021). Product reviews: A benefit, a burden, or a trifle? How seller reputation affects the role of product reviews. How Seller Reputation Affects the Role of Product Reviews (June 23, 2021). Forthcoming in MIS Quarterly.
Wright, R. T., Johnson, S. L., & Kitchens, B. (2023). Phishing Susceptibility In Context: A Multilevel Information Processing Perspective On Deception Detection. MIS Quarterly, 47(2).
Xu, H., Gong, X., & Yan, R. (2024). Online Impulsive Buying in Social Commerce: A Mixed-Methods Research. Information & Management, 103943.
Zakaryazad, A., & Duman, E. (2016). A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing, 175, 121-131.
Zeng, Y., & Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12), 5656.
Zhang, G., Wu, J., Yang, J., Beheshti, A., Xue, S., Zhou, C., & Sheng, Q. Z. (2021). Fraudre: Fraud detection dual-resistant to graph inconsistency and imbalance. 2021 IEEE International Conference on Data Mining (ICDM),
Zhang, S., Yin, H., Chen, T., Hung, Q. V. N., Huang, Z., & Cui, L. (2020). Gcn-based user representation learning for unifying robust recommendation and fraudster detection. Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval,
Flaticon. (n.d.). Flaticon: Home Page. Retrieved from https://www.flaticon.com, Accessed 2024/06/29.
Dou, Y. (2021). CARE-GNN, GitHub, Retrieved from https://github.com/YingtongDou/CARE-GNN, Accessed 2024/06/29.
指導教授 曾筱珽(Hsiao-Ting Tseng) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明