參考文獻 |
Al-maaitah, T. A., Tha’er Majali, M. A., & Almaaitah, D. A. (2021). The impact of COVID-19 on the electronic commerce users′ behavior. Journal of Contemporary Issues in Business and Government Vol, 27(1).
Alavijeh, Z. Z. (2015). The application of link mining in social network analysis. Advances in Computer Science: An International Journal, 4(3), 64-69.
Aral, S., & Walker, D. (2014). Tie strength, embeddedness, and social influence: A large-scale networked experiment. Management Science, 60(6), 1352-1370.
Argyris, Y. A., Wang, Z., Kim, Y., & Yin, Z. (2020). The effects of visual congruence on increasing consumers’ brand engagement: An empirical investigation of influencer marketing on Instagram using deep-learning algorithms for automatic image classification. Computers in Human Behavior, 112, 106443.
Arndt, A. D., Karande, K., & Glassman, M. (2016). How context interferes with similarity-attraction between customers and service providers. Journal of Retailing and Consumer Services, 31, 294-303.
Baesens, B., Höppner, S., & Verdonck, T. (2021). Data engineering for fraud detection. Decision Support Systems, 150, 113492.
Banerjee, A. V. (1992). A simple model of herd behavior. The quarterly journal of economics, 107(3), 797-817.
Batista, A. T. A., Figueiredo, K. T., & Goldschmidt, R. R. (2021). Fraud Detection in Social Commerce: combining structured attributes and images. XVII Brazilian Symposium on Information Systems,
Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., & Qi, Y. (2019). Titant: Online real-time transaction fraud detection in ant financial. arXiv preprint arXiv:1906.07407.
Carta, S., Fenu, G., Recupero, D. R., & Saia, R. (2019). Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model. Journal of Information Security and Applications, 46, 13-22.
Chen, J., Chen, Q., Jiang, F., Guo, X., Sha, K., & Wang, Y. (2024). SCN_GNN: A GNN-based fraud detection algorithm combining strong node and graph topology information. Expert systems with applications, 237, 121643.
Chen, Y., & Xie, J. (2008). Online consumer review: Word-of-mouth as a new element of marketing communication mix. Management Science, 54(3), 477-491.
Cheng, L.-C., Hu, H.-W., & Wu, C.-C. (2021). Spammer group detection using machine learning technology for observation of new spammer behavioral features. Journal of Global Information Management (JGIM), 29(2), 61-76.
Cheng, L.-C., Wu, Y. T., Chao, C.-T., & Wang, J.-H. (2024). Detecting fake reviewers from the social context with a graph neural network method. Decision Support Systems, 179, 114150.
Cheung, M., She, J., & Liu, L. (2018). Deep learning-based online counterfeit-seller detection. IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Cheung, M., She, J., Sun, W., & Zhou, J. (2019). Detecting online counterfeit-goods seller using connection discovery. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 15(2), 1-16.
Chiu, C., Ku, Y., Lie, T., & Chen, Y. (2011). Internet auction fraud detection using social network analysis and classification tree approaches. International Journal of Electronic Commerce, 15(3), 123-147.
Deng, H., Wang, W., & Lim, K. H. (2022). Repairing Integrity-based Trust Violations In Ascription Disputes For Potential E-commerce Customers. MIS Quarterly, 46(4).
Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., & Yu, P. S. (2020). Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. Proceedings of the 29th ACM international conference on information & knowledge management,
Elshaar, S., & Sadaoui, S. (2020). Semi-supervised classification of fraud data in commercial auctions. Applied Artificial Intelligence, 34(1), 47-63.
Godes, D., Mayzlin, D., Chen, Y., Das, S., Dellarocas, C., Pfeiffer, B., Libai, B., Sen, S., Shi, M., & Verlegh, P. (2005). The firm′s management of social interactions. Marketing letters, 16, 415-428.
Gruzd, A., & Haythornthwaite, C. (2011). Networking online: cybercommunities. In (pp. 167-179): SAGE Publications Ltd.
Guo, Q., Li, Z., An, B., Hui, P., Huang, J., Zhang, L., & Zhao, M. (2019). Securing the deep fraud detector in large-scale e-commerce platform via adversarial machine learning approach. The world wide web conference,
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition,
Higueras-Castillo, E., Liébana-Cabanillas, F. J., & Villarejo-Ramos, Á. F. (2023). Intention to use e-commerce vs physical shopping. Difference between consumers in the post-COVID era. Journal of Business Research, 157, 113622.
Jhangiani, R., Bein, D., & Verma, A. (2019). Machine learning pipeline for fraud detection and prevention in e-commerce transactions. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON),
Li, A., Qin, Z., Liu, R., Yang, Y., & Li, D. (2019). Spam review detection with graph convolutional networks. Proceedings of the 28th ACM International conference on information and knowledge management,
Li, Q., He, Y., Xu, C., Wu, F., Gao, J., & Li, Z. (2022). Dual-Augment Graph Neural Network for Fraud Detection. Proceedings of the 31st ACM International Conference on Information & Knowledge Management,
Li, X. (2017). Revealing or Non-Revealing. MIS Quarterly, 41(4), 1335-1346.
Li, Z., Song, J., Hu, S., Ruan, S., Zhang, L., Hu, Z., & Gao, J. (2019). Fair: Fraud aware impression regulation system in large-scale real-time e-commerce search platform. 2019 IEEE 35th international conference on data engineering (ICDE),
Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., & He, Q. (2021). Pick and choose: a GNN-based imbalanced learning approach for fraud detection. Proceedings of the web conference 2021,
Luo, J., Luo, J., Nan, G., & Li, D. (2023). Fake review detection system for online E-commerce platforms: A supervised general mixed probability approach. Decision Support Systems, 175, 114045.
McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics: understanding rating dimensions with review text. Proceedings of the 7th ACM conference on Recommender systems,
McAuley, J. J., & Leskovec, J. (2013). From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. Proceedings of the 22nd international conference on World Wide Web,
Nguyen, V.-H., Sugiyama, K., Nakov, P., & Kan, M.-Y. (2020). Fang: Leveraging social context for fake news detection using graph representation. Proceedings of the 29th ACM international conference on information & knowledge management,
Paredes-Corvalan, D., Pezoa-Fuentes, C., Silva-Rojas, G., Rojas, I. V., & Castillo-Vergara, M. (2023). Engagement of the E-Commerce Industry in the US, According to Twitter in the Period of the COVID-19 Pandemic. Heliyon.
Peng, H., Zhang, R., Dou, Y., Yang, R., Zhang, J., & Yu, P. S. (2021). Reinforced neighborhood selection guided multi-relational graph neural networks. ACM Transactions on Information Systems (TOIS), 40(4), 1-46.
Qandos, N., Hamad, G., Alharbi, M., Alturki, S., Alharbi, W., & Albelaihi, A. A. (2024). Multiscale cascaded domain-based approach for Arabic fake reviews detection in e-commerce platforms. Journal of King Saud University-Computer and Information Sciences, 36(2), 101926.
Raghavan, P., & El Gayar, N. (2019). Fraud detection using machine learning and deep learning. 2019 international conference on computational intelligence and knowledge economy (ICCIKE),
Rao, R. S., & Pais, A. R. (2019). Jail-Phish: An improved search engine based phishing detection system. Computers & Security, 83, 246-267.
Resnick, P., & Zeckhauser, R. (2002). Trust among strangers in Internet transactions: Empirical analysis of eBay′s reputation system. In The Economics of the Internet and E-commerce (pp. 127-157). Emerald Group Publishing Limited.
Rueger, J., Dolfsma, W., & Aalbers, R. (2023). Mining and analysing online social networks: Studying the dynamics of digital peer support. MethodsX, 10, 102005.
Saeidi, S., & Baradari, Z. (2023). Examining the correlation between metrics in the Instagram social network to identify fake pages and improve marketing. Computers in Human Behavior Reports, 12, 100341.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE transactions on neural networks, 20(1), 61-80.
Sheikhi, S. (2021). An effective fake news detection method using WOA-xgbTree algorithm and content-based features. Applied Soft Computing, 109, 107559.
Song, Y., Escobar, O., Arzubiaga, U., & De Massis, A. (2022). The digital transformation of a traditional market into an entrepreneurial ecosystem. Review of Managerial Science, 1-24.
Song, Y., Xin, R., Chen, P., Zhang, R., Chen, J., & Zhao, Z. (2023). Identifying performance anomalies in fluctuating cloud environments: A robust correlative-GNN-based explainable approach. Future Generation Computer Systems, 145, 77-86.
Sun, X., Zhang, Y., & Feng, J. (2024). Impact of online information on the pricing and profits of firms with different levels of brand reputation. Information & Management, 61(1), 103882.
Wang, H., Du, R., Shen, W., Qiu, L., & Fan, W. (2021). Product reviews: A benefit, a burden, or a trifle? How seller reputation affects the role of product reviews. How Seller Reputation Affects the Role of Product Reviews (June 23, 2021). Forthcoming in MIS Quarterly.
Wright, R. T., Johnson, S. L., & Kitchens, B. (2023). Phishing Susceptibility In Context: A Multilevel Information Processing Perspective On Deception Detection. MIS Quarterly, 47(2).
Xu, H., Gong, X., & Yan, R. (2024). Online Impulsive Buying in Social Commerce: A Mixed-Methods Research. Information & Management, 103943.
Zakaryazad, A., & Duman, E. (2016). A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing, 175, 121-131.
Zeng, Y., & Tang, J. (2021). Rlc-gnn: An improved deep architecture for spatial-based graph neural network with application to fraud detection. Applied Sciences, 11(12), 5656.
Zhang, G., Wu, J., Yang, J., Beheshti, A., Xue, S., Zhou, C., & Sheng, Q. Z. (2021). Fraudre: Fraud detection dual-resistant to graph inconsistency and imbalance. 2021 IEEE International Conference on Data Mining (ICDM),
Zhang, S., Yin, H., Chen, T., Hung, Q. V. N., Huang, Z., & Cui, L. (2020). Gcn-based user representation learning for unifying robust recommendation and fraudster detection. Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval,
Flaticon. (n.d.). Flaticon: Home Page. Retrieved from https://www.flaticon.com, Accessed 2024/06/29.
Dou, Y. (2021). CARE-GNN, GitHub, Retrieved from https://github.com/YingtongDou/CARE-GNN, Accessed 2024/06/29. |