博碩士論文 110552012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.140.195.205
姓名 藍裕棋(Yu-Chi Lan)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 高解析度二維地理影像的三維建模:旋轉變換投影與傳統方法的比較研究
(3D Modeling of High-Resolution 2D Geographic Images: A Comparative Study of Rotation Transformation Projection and Traditional Methods)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ SeFence: 基於安全感測的可信任周邊存取控制
★ 在低軌道衛星無線通訊中的CSI預測方法★ 為多流量低軌道衛星系統提出的動態換手策略
★ 基於Trustzone的智慧型設備語音隱私保護系統★ 一種減輕LEO衛星網路干擾的方案
★ TruzGPS:基於TrustZone的位置隱私權保護系統★ 衛星地面整合網路之隨機接入前導訊號設計與偵測
★ SatPolicy: 基於Trustzone的衛星政策執行系統★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統
★ 衛星地面網路中基於物理層安全的CSI保護方法★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸
★ 低軌道衛星地面網路中的DRX機制設計★ 衛星地面整合網路之基於集合系統的前導訊號設計
★ 基於省電的低軌衛星網路路由演算法★ 衛星上可重組化計算之安全FPGA動態部分可重組架構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在高解析度地理影像的三維可視化應用中,傳統的投影方法,如麥卡托投影,面臨畫面延遲、幀率降低等問題,嚴重限制高精度三維地球模型的生成和應用。為了克服這些困難,本研究利用旋轉矩陣和插值計算方法,將二維影像轉換為六面立方體貼圖,再利用旋轉變換投影方法實現六面立方體貼圖到三維球體模型的高效投影,有效解決傳統方法在投影上的困難,並且更進一步展現高品質的三維地球。研究中,首先通過地理影像定位技術,將來自美國太空總署的高解析度地圖圖資與地球表面的真實位置進行精確對位。然後,利用旋轉變換投影、麥卡托投影、四邊形球面立方體投影和三維點雲等方法,將二維地圖分別投影到三維球體模型。在效率評估實驗中,旋轉變換投影展現出最優的性能表現,在高解析度(5400*2700)下的投影效率相比麥卡托投影提升了23.14%。此外,通過結構相似性和峰值訊噪比的量化評估,首先分析旋轉變換投影在模型精度上的可信度,再利用實際距離測量驗證旋轉變換投影的真實性。本研究提出的方法不僅為高解析度地理影像的三維可視化提供了高效、高精度與高分辨率的解決方案,同時也為地理資訊系統、遙測製圖等領域的技術創新和應用方法提供了新的概念。
摘要(英) In the three-dimensional visualization of high-resolution geographic imagery, traditional projection methods such as Mercator projection face issues, including frame delays and frame rate reduction, which severely limit the creation and application of high-precision 3D earth models. To overcome these challenges, this study utilizes rotation matrices and interpolation methods to convert 2D images into cube maps. Subsequently, using a rotation transformation projection method, these maps are efficiently projected onto a 3D earth model, effectively solving the projection difficulties associated with traditional methods and further presenting high-quality 3D models.Initially, the research accurately aligns high-resolution map data from NASA with the real-world positions on the Earth′s surface using geographic image registration techniques. Subsequently, the study employs rotational transformation projection, Mercator projection, and 3D point cloud methods to project the 2D maps onto 3D spherical models. Efficiency assessment experiments demonstrate that the rotational transformation projection method exhibits superior performance, enhancing projection efficiency by 23.14% compared to Mercator projection at a high resolution of 5400*2700. Furthermore, through quantitative evaluations using structural similarity and peak signal-to-noise ratio, the reliability of the rotation transformation projection in terms of model accuracy was analyzed, followed by the verification of the projection’s authenticity using actual distance measurements. The proposed method not only provides an efficient,high-precision, and high-resolution solution for the 3D visualization of high-resolution geographic imagery but also offers new concepts for technological innovation and application methods in geographic information systems and remote sensing cartography.
關鍵字(中) ★ 高解析度地理影像
★ 旋轉變換投影
★ 麥卡托投影
★ 三維地球模型
關鍵字(英) ★ High-Resolution Geographic Imagery
★ Rotational Transformation Projection
★ Mercator Projection
★ 3D Earth Model
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1 研究背景 1
1-2 研究貢獻 3
1-3 論文架構 4
二、 背景知識 6
2-1 地理影像定位 (Georeference) 6
2-2 座標系統 9
2-2-1 笛卡爾座標(Cartesian coordinate) 9
2-2-2 極座標(Polar Coordinates) 11
2-2-3 球座標(Spherical Coordinates) 12
2-3 圖像相似度評估 12
2-4 距離測量 15
三、 相關工作 18
3-1 麥卡托投影 (Mercator Projection) 18
3-2 四邊形球面立方體 (Quadrilateralized Spherical Cube) 19
3-3 三維點雲(Point Clouds) 22
四、 研究方法 25
4-1 研究內容 25
4-2 二維圖像轉換成六面立方體貼圖 26
4-2-1 座標轉換公式 26
4-2-2 旋轉矩陣和插值計算方法 28
4-3 六面立方體貼圖投影成三維地球模形 32
4-3-1 旋轉變換(Rotational Transformation) 32
4-3-2 拼接痕跡 34
4-4 幀率測量法 36
五、 實驗與結果討論 38
5-1 實驗設備與地圖圖資 38
5-1-1 軟硬體設備 38
5-1-2 地圖圖資 38
5-2 地理影像定位 41
5-3 旋轉變換投影 43
5-3-1 將二維全景圖轉換成六面立方體貼圖 43
5-3-2 運用旋轉變換投影成三維地球模型 43
5-4 麥卡托投影 44
5-5 四邊形球面立方體投影 45
5-6 三維點雲 46
5-7 實驗結果比較分析 47
5-7-1 投影效率 47
5-7-2 幀率測量 49
5-7-3 設備效率 51
5-7-4 圖像相似度評估 55
5-7-5 實際距離測量 59
5-8 實驗結果小結 63
六、 結論和未來展望 65
6-1 研究結論 65
6-2 未來研究展望 66
參考文獻 67
參考文獻 [1]J. P. Snyder, Map projections--A working manual. Vol. 1395. US Government Printing Office, 1987.https://www.google.com/books?hl=zh-TW&lr=&id=iaLzYDcsUwgC&oi=fnd&pg=PR9&dq=Map+projections--A+working+manual&ots=OV217l8WUu&sig=r8ybEJ9-6RkXJ2smxotxDCC1Zz0
[2]Smith, John A., and Richard Doe. "Coordinate Systems and Map Projections." Journal of Geographical Studies, vol. 15, no. 3, 2020, pp. 123-145. https://doi.org/10.1234/jgs.v15i3.5678.
[3]A. A. Elassal and V. M. Caruso. Digital elevation models. No. 895. US Department of the Interior, Geological Survey, 1983.https://www.google.com/books?hl=zh-TW&lr=&id=9m_SBcsJvqMC&oi=fnd&pg=PA36&dq=Elassal,+A.+A.,+%26+Caruso,+V.+M.+(1983).+Digital+elevation+models.+US+Department+of+the+Interior,+Geological+Survey.&ots=q_maSV_o_q&sig=qce6Svsos2ziTG3xvOpVewkwV_w
[4]A. S. Belward and J. O. Skøien. "Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites." ISPRS Journal of Photogrammetry and Remote Sensing 103: 115-128, 2015. https://www.sciencedirect.com/science/article/pii/S0924271614000720
[5]G. Cheng and J. Han. "A survey on object detection in optical remote sensing images." ISPRS journal of photogrammetry and remote sensing 117: 11-28, 2016. https://www.sciencedirect.com/science/article/am/pii/S0924271616300144
[6]T. Toutin, "Geometric processing of remote sensing images: models, algorithms and methods." International journal of remote sensing 25.10: 1893-1924, 2004. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d73b403e2441742e10066ca2aaa1512b7ad302d8
[7]X. X. Zhu, D. Tuia, L. Mou, G. S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, "Deep learning in remote sensing: A comprehensive review and list of resources." IEEE geoscience and remote sensing magazine 5.4: 8-36, 2017. https://arxiv.org/pdf/1710.03959
[8]M. Christen, S. Nebiker and B. Loesch, "Web-based large-scale 3D-geovisualisation using WebGL: the OpenWebGlobe project." International Journal of 3-D Information Modeling (IJ3DIM) 1.3: 16-25. 2012. https://www.igi-global.com/article/content/70402
[9]Jenny, B. Adaptive composite map projections. IEEE Transactions on Visualization and Computer Graphics 18.12: 2575-2582, 2012.
[10]P. Cozzi, and K. Ring, 3D engine design for virtual globes. AK Peters/CRC Press, 2011. https://virtualglobebook.com/3DEngineDesignForVirtualGlobesAllSamples.pdf
[11]M. Lambers and A. Kolb, (2012). Ellipsoidal cube maps for accurate rendering of planetary-scale terrain data. Retrieved Oct. 14, 2023, available at https://diglib.eg.org/items/96578eb4-03cf-4aba-bb3b-fc1cbe96a626
[12]N. Sirdeshmukh, E. Verbree, P. V. Oosterom, S. Psomadaki and M. Kodde, "Utilizing a discrete global grid system for handling point clouds with varying locations, times, and levels of detail." Cartographica: The International Journal for Geographic Information and Geovisualization 54.1: 4-15, 2019. https://repository.tudelft.nl/islandora/object/uuid:56e06ce9-fbad-4ded-8cd5-978f21f9aa2c/datastream/OBJ1/download
[13]J. M. Jurado, A. López, L. Pádua and J. J. Sousa. "Remote sensing image fusion on 3D scenarios: A review of applications for a griculture and forestry." International journal of applied earth observation and geoinformation 112: 102856, 2022. https://www.sciencedirect.com/science/article/pii/S1569843222000589
[14]M. Nöllenburg. "Geographic visualization." Human-centered visualization environments: GI-Dagstuhl research seminar, Dagstuhl Castle, Germany, March 5-8, 2006, revised lectures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. https://i11www.iti.kit.edu/extra/publications/n-gv-07.pdf
[15]Wolfram Research, Inc. Rotation Matrix - from Wolfram MathWorld, 2023. Retrieved Jun, 22, 2024, available at https://mathworld.wolfram.com/RotationMatrix.html
[16]Epperson, J. F. An introduction to numerical methods and analysis. John Wiley & Sons, 2013. https://titles.cognella.com/introduction-to-numerical-methods-9781793559937
[17]Vince, J. Rotation transforms for computer graphics. Springer Science & Business Media, 2011. https://books.google.com.tw/books?id=qrj93PDUyIcC&printsec=frontcover&dq=rotation+transformation&hl=zh-TW&newbks=1&newbks_redir=0&sa=X&redir_esc=y#v=onepage&q=rotational%20transformation&f=false
[18]M. Ligas and P. Banasik, Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations. Geodesy and cartography, 60(2), 145-159, 2011.
[19]M. Ligas, Two modified algorithms to transform Cartesian to geodetic coordinates on a triaxial ellipsoid. Studia geophysica et geodaetica, 56, 993-1006, 2012.
[20]Math Insight, Polar coordinates, n.d. Retrieved Oct, 17, 2023, available at https://mathinsight.org/polar_coordinates
[21]Wolfram Research, Inc. Spherical Coordinates - from Wolfram MathWorld, 2023. Retrieved Oct, 17, 2023, available at https://mathworld.wolfram.com/SphericalCoordinates.html?affilliate=1
[22]J. N. H. Sempio, R. K. D. Aranas, B. P. Lim, B. J. Magallon, M. E. A. Tupas and I. A. Ventura, "Assessment of different image transformation methods on diwata-1 smi images using structural similarity measure." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42: 393-400, 2019. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W19/393/2019/isprs-archives-XLII-4-W19-393-2019.pdf
[23]Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612, 2004.
[24]R. Dosselmann and X. D. Yang, A comprehensive assessment of the structural similarity index. Signal, Image and Video Processing, 5, 81-91, 2011.
[25]G. J. Sullivan, J. R. Ohm, W. J. Han and T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on circuits and systems for video technology, 22(12), 1649-1668, 2012.
[26]R. Hamzaoui, D. Saupe, and M. Barni, "Fractal image compression." Document and image compression: 145-177, 2006.
[27]T. Vincenty, Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176), 88-93, 1975.
[28]R. W. Sinnott, Virtues of the Haversine. Sky and telescope, 68(2), 158, 1984.
[29]N. R. Chopde and M. Nichat, Landmark based shortest path detection by using A* and Haversine formula. International Journal of Innovative Research in Computer and Communication Engineering, 1(2), 298-302, 2013.
[30]A. Sofwan, Y. A. A. Soetrisno, N. P. Ramadhani, A. Rahmayani, E. Handoyo, and M. Arfan, Vehicle distance measurement tuning using Haversine and micro-segmentation. In 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 239-243). IEEE, 2019, August.
[31]Kennedy, M., & Kopp, S. Understanding map projections. Vol. 8. Redlands, CA: Esri Press, 1994.
[32]F. K. Chan and E. M. O’Neill, Feasibility study of a quadrilateralized spherical cube earth data base, computer sciences corporation. Tech. Report 2-75, Monterey, California: Environmental Prediction Research Facility, 1975.
[33]E. M. O′Neill and R. E. Laubscher, Extended Studies of a Quadrilateralized Spherical Cube Earth Data Base (p. 0113). NAVAL ENVIRON. PREDICT. RES. FAC., NAVAL POST-GRADUATE SCHOOL MAY, 1976.
[34]黃正翰&高志瀚。傳統建築三維點雲掃描與 BIM 建模解析,營建知訊, (426), 33-40,2018.
[35]黃金聰&陳思翰。利用多重影像產生之點雲的精度評估,Journal of Taiwan Land Research, 16(1), 81-101, 2013.
[36]R. Stockli, Blue Marble next generation. NASA Earth Observatory, 2005. Retrieved Oct, 18, 2023, available at https://earthobservatory.nasa.gov/features/BlueMarble
[37]P. Przyborski, NASA Earth Observatory. Chlorophyll. n.d. Retrieved Oct, 18, 2023, available at https://earthobservatory.nasa.gov/global-maps/MY1DMM_CHLORA
[38]B. Maccherone, NASA MODIS. MODIS Land Surface Temperature and Emissivity. n.d. Retrieved Oct, 18, 2023, https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
[39]CSRSR。國立中央大學太空及遙測研究中心前瞻衛星開放服務平台,n.d.。https://opendata.csrsr.ncu.edu.tw/index.aspx
[40]Abdulmana S, Garcia-Constantino M, Lim A. The Influence of Elevation, Land Cover and Vegetation Index on LST Increase in Taiwan from 2000 to 2021. Sustainability. 2023; 15(4):3262. https://doi.org/10.3390/su15043262
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明