參考文獻 |
Allen, D. E., & Powell, S. R. (2011). Asset Pricing, the Fama—French Factor Model and the Implications of Quantile-Regression Analysis. In G. N. Gregoriou & R. Pascalau (Eds.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures (pp. 176–193). Palgrave Macmillan UK. https://doi.org/10.1057/9780230298101_7
Bailey, D. H., Borwein, J., Lopez de Prado, M., & Zhu, Q. J. (2016, September 19). The Probability of Backtest Overfitting. https://papers.ssrn.com/abstract=2840838
Bailey, D. H., Ger, S., Lopez de Prado, M., & Sim, A. (2015). 20—Statistical Overfitting and Backtest Performance. In E. Jurczenko (Ed.), Risk-Based and Factor Investing (pp. 449–461). Elsevier. https://doi.org/10.1016/B978-1-78548-008-9.50020-4
Baquero, G., Horst, J. ter, & Verbeek, M. (2005). Survival, Look-Ahead Bias, and Persistence in Hedge Fund Performance. Journal of Financial and Quantitative Analysis, 40(3), 493–517. https://doi.org/10.1017/S0022109000001848
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The Best of Both Worlds. Computing in Science & Engineering, 13(2), 31–39. https://doi.org/10.1109/MCSE.2010.118
Das, S. (2010). Implementing Option Pricing Models Using Python and Cython. 8(4), 1–12.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010
Fama, E. F., French, K. R., Booth, D. G., & Sinquefield, R. (1993). Differences in the Risks and Returns of NYSE and NASD Stocks. Financial Analysts Journal. https://doi.org/10.2469/faj.v49.n1.37
Hansen, P. R., & Lunde, A. (2004). A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? (SSRN Scholarly Paper 264571). https://doi.org/10.2139/ssrn.264571
Harvey, C. R., Liu, Y., & Zhu, H. (2016). ... And the Cross-Section of Expected Returns. The Review of Financial Studies, 29(1), 5–68.
Hilpisch, Y. (2020). Python for Algorithmic Trading. O’Reilly Media, Inc.
Hsu, Y.-L., Tsai, Y.-C., & Li, C.-T. (2023). FinGAT: Financial Graph Attention Networks for Recommending Top-KK Profitable Stocks. IEEE Transactions on Knowledge and Data Engineering, 35(1), 469–481. https://doi.org/10.1109/TKDE.2021.3079496
Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643
Lai, W.-N., Chen, C. Y. T., & Sun, E. W. (2022). Risk factor extraction with quantile regression method | Annals of Operations Research. 316, 1543–1572.
Li, H., Zhang, X., Li, Z., & Zheng, C. (2020). Overview of Machine Learning for Stock Selection Based on Multi-Factor Models. E3S Web of Conferences, 214, 02047. https://doi.org/10.1051/e3sconf/202021402047
Lo, A. W. (2002). The Statistics of Sharpe Ratios. Financial Analysts Journal, 58(4), 36–52. https://doi.org/10.2469/faj.v58.n4.2453
Magdon-Ismail, M., & Atiya, A. F. (2006). Maximum Drawdown (SSRN Scholarly Paper 874069). https://papers.ssrn.com/abstract=874069
Maiti, M. (2021). Quantile regression, asset pricing and investment decision. IIMB Management Review, 33(1), 28–37. https://doi.org/10.1016/j.iimb.2021.03.005
Romano, J. P., & Wolf, M. (2013). Testing for monotonicity in expected asset returns. Journal of Empirical Finance, 23, 93–116. https://doi.org/10.1016/j.jempfin.2013.05.001
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-0531(76)90046-6
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk*. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Smith, K. W. (2015). Cython: A Guide for Python Programmers. O’Reilly Media, Inc.
Ta, V.-D., Liu, C.-M., & Addis, D. (2018). Prediction and Portfolio Optimization in Quantitative Trading Using Machine Learning Techniques. Proceedings of the 9th International Symposium on Information and Communication Technology, 98–105. https://doi.org/10.1145/3287921.3287963
TEJ. (2024, April 16). TEJ台灣經濟新報. TEJ台灣經濟新報. https://www.tejwin.com/
Tortoriello, R. (2009). Quantitative strategies for achieving alpha. McGraw Hill. https://cir.nii.ac.jp/crid/1130282272615654272
Waskom, M. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Wilbers, I. M., Langtangen, H. P., & Ødegård, Å. (2009). Using Cython to Speed up Numerical Python Programs. Proceedings of MekIT 9, 2009, 496–512.
凱衛資訊. (2024). MultiCharts程式交易操盤軟體. https://www.multicharts.com.tw/
卓育辰. (2021). 結合因子分析與程式交易應用於台股之自動化回測與驗證平台. National Central University.
嘉實資訊. (2024). 台灣程式交易看盤軟體第一領導品牌XQ全球贏家. https://www.xq.com.tw/
張林忠. (2014). 分析師關鍵報告2:張林忠教你程式交易. 寰宇.
董寶蘭. (2010). 程式交易策略實證研究-以投資ETF0050為例. 淡江大學管理科學研究所企業經營碩士在職專班學位論文, 2010, 1–65. https://doi.org/10.6846/TKU.2010.01059 |