博碩士論文 111423061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.12.163.57
姓名 劉浩平(Hao-Ping Liu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 整合分位數回歸分析與單因子選股的股票選股策略回測與績效評估之研究
(On Integrating Quantile Regression with Factor Analysis for Efficient Backtesting and Performance Evaluation of Stock Selection Strategies)
相關論文
★ 針對提昇資料倉儲資料庫執行效能之知識管理與相關系統設計★ 以關聯規則探勘為基礎,探討詐騙車手提領型態互動之研究
★ 部落格之網路口碑評比機制平台管理與應用★ 虛擬貨幣交易平台之實現
★ 適用於多種設備的可否認鑑別協定之設計★ 交易程式最佳化的多維度分析平台之設計與建置
★ 多商品多策略程式交易績效曲線比較和分群機制之研究★ 以工作流程與Portlet為基礎整合學習管理系統以支援課程編組
★ 使用服務導向技術建構具支援二線廠客製化能力的電子中樞系統之研究★ 以流程為中心的Portlet重用性分析
★ 應用資料倉儲技術建構平衡計分卡資訊系統之研究-以某消費性電子製造公司人力資源計分卡為例★ 自動化的產品平台管理與應用
★ 以代理人為基礎的資訊系統協助新產品開發流程的自動化★ 以整合式的教練引導開發以框架為基礎的專案
★ 支援新產品研發的整合性知識管理系統★ 以流程為導向協同異質性數位學習系統中呈現層與資料層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著資料科學與人工智慧的迅速發展,量化交易逐漸成為主流的投資方式。然而,現有的量化交易系統在應對多變的金融市場時存在一定的局限性。本研究旨在結合Python與Cython開發一個自動化股票回測平台,結合分位數迴歸模型,比較不同因子在不同回報分位數的影響效果,從而優化因子選擇的過程。透過分位數迴歸,可以對每個因子在不同回報分位數下的表現進行評估,並確定最適合的分位數,從而提高選擇因子的準確性和穩健性。
系統架構由資料存取層、邏輯運算層和應用層組成,藉由資料存取層與資料庫串接存取資料,並交付給邏輯運算層中的回測模組進行運算,其中核心的backtest_core子模組負責核心回測運算,包括資金分配、手續費計算以及最終績效等等,此子模組由Python與Cython所開發,有效降低運算時間成本,最終將投資組合績效傳遞給應用層產出視覺化工具展示回測結果。
本研究實驗結果顯示,該系統能夠有效評估不同因子在台灣股票市場中的表現,並自動生成投資組合的收益與風險分布圖。實驗還驗證藉由分位數迴歸建構單因子選股模型的有效性,藉由選取影響係數絕對值越大之分位數能夠增加投資組合之CAGR並有效降低MDD。本實驗於分位數迴歸模型中引入時間與群數的交互項,以此觀察因子在不同時間窗格中的穩健性,最終得出若是交互項不顯著(p值大於0.05)則較不受時間之影響。
摘要(英) With the rapid advancement of data science and artificial intelligence, quantitative trading has gradually become a mainstream investment method. However, existing quantitative trading systems have certain limitations when coping with the volatile financial markets. This study aims to develop an automated stock backtesting platform using Python and Cython, integrating quantile regression models to compare the effects of different factors across various return quantiles, thereby optimizing the factor selection process. Through quantile regression, the performance of each factor can be evaluated at different return quantiles to determine the most appropriate quantile,
thereby enhancing the accuracy and robustness of factor selection.
The system architecture consists of three layers: data access layer, logic processing layer, and application layer. The data access layer interfaces with the database to retrieve data, which is then processed by the backtesting module in the logic processing layer. The core backtest_core submodule is responsible for the primary backtesting computations, including fund allocation, fee calculation, and final performance evaluation. This submodule is developed using Python and Cython, effectively reducing computational time costs. The performance results of the investment portfolio are then passed to the application layer to produce visual tools that display the
backtesting results.
The experimental results of this study indicate that the system can effectively evaluate the performance of different factors in the Taiwan stock market and automatically generate the return and risk distribution charts of the investment portfolio. The experiments also validate the effectiveness of constructing single-factor stock selection models using quantile regression. Selecting the quantile with the highest absolute value of the impact coefficient can increase the CAGR and effectively reduce the MDD of the investment portfolio. The experiments introduce an interaction term between time and group number into the quantile regression model to observe the robustness of factors across different time windows. The results show that if the interaction term is not significant (p-value greater than 0.05), the factor is less affected
by time.
關鍵字(中) ★ 量化交易
★ 單因子模型
★ 分位數迴歸
★ Python
★ Cython
關鍵字(英) ★ Quantitative Trading
★ Single-Factor Model
★ Quantile Regression
★ Python
★ Cython
論文目次 摘要 i
Abstract ii
致謝辭 iv
目錄 v
圖目錄 vii
表目錄 viii
演算法目錄 ix
程式碼目錄 x
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 4
二、 文獻探討 6
2.1 因子模型 6
2.2 分位數回歸(Quantile Regression) 7
2.3 量化交易 8
2.4 Cython 10
三、 系統設計與實作 12
3.1 單因子選股及分位數迴歸模型 12
3.1.1 單因子選股 13
3.1.2 分位數迴歸模型 13
3.1.3 單因子選股與分位數迴歸 16
3.1.4 基於分位數迴歸的單因子選股模型穩健性分析 16
3.2 回測語言的設計與延伸 17
3.2.1 回測語言概述 18
3.2.2 Python與Cython的應用 18
3.2.3 Extended DataFrame的設計與應用 20
3.3 系統架構 23
3.3.1 應用層 24
3.3.2 邏輯運算層 26
3.3.3 資料存取層 32
3.4 程式碼實現 34
3.4.1 因子切割 34
3.4.2 計算績效 35
3.5 績效計算指標 36
四、 系統驗證與分析 37
4.1 實驗變數 37
4.1.1 資料來源 37
4.1.2 因子選擇 37
4.2 實驗設計 40
4.3 實驗結果 41
4.3.1 單因子分位數回歸分析 41
4.3.2 不同時間窗格因子穩健性檢驗 47
4.3.3 不同產業因子績效表現 51
4.3.4 比較系統回測時間表現 59
五、 結論 61
5.1 結論 61
5.2 研究限制 62
5.3 未來建議 62
參考文獻 63
參考文獻 Allen, D. E., & Powell, S. R. (2011). Asset Pricing, the Fama—French Factor Model and the Implications of Quantile-Regression Analysis. In G. N. Gregoriou & R. Pascalau (Eds.), Financial Econometrics Modeling: Market Microstructure, Factor Models and Financial Risk Measures (pp. 176–193). Palgrave Macmillan UK. https://doi.org/10.1057/9780230298101_7
Bailey, D. H., Borwein, J., Lopez de Prado, M., & Zhu, Q. J. (2016, September 19). The Probability of Backtest Overfitting. https://papers.ssrn.com/abstract=2840838
Bailey, D. H., Ger, S., Lopez de Prado, M., & Sim, A. (2015). 20—Statistical Overfitting and Backtest Performance. In E. Jurczenko (Ed.), Risk-Based and Factor Investing (pp. 449–461). Elsevier. https://doi.org/10.1016/B978-1-78548-008-9.50020-4
Baquero, G., Horst, J. ter, & Verbeek, M. (2005). Survival, Look-Ahead Bias, and Persistence in Hedge Fund Performance. Journal of Financial and Quantitative Analysis, 40(3), 493–517. https://doi.org/10.1017/S0022109000001848
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The Best of Both Worlds. Computing in Science & Engineering, 13(2), 31–39. https://doi.org/10.1109/MCSE.2010.118
Das, S. (2010). Implementing Option Pricing Models Using Python and Cython. 8(4), 1–12.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010
Fama, E. F., French, K. R., Booth, D. G., & Sinquefield, R. (1993). Differences in the Risks and Returns of NYSE and NASD Stocks. Financial Analysts Journal. https://doi.org/10.2469/faj.v49.n1.37
Hansen, P. R., & Lunde, A. (2004). A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? (SSRN Scholarly Paper 264571). https://doi.org/10.2139/ssrn.264571
Harvey, C. R., Liu, Y., & Zhu, H. (2016). ... And the Cross-Section of Expected Returns. The Review of Financial Studies, 29(1), 5–68.
Hilpisch, Y. (2020). Python for Algorithmic Trading. O’Reilly Media, Inc.
Hsu, Y.-L., Tsai, Y.-C., & Li, C.-T. (2023). FinGAT: Financial Graph Attention Networks for Recommending Top-KK Profitable Stocks. IEEE Transactions on Knowledge and Data Engineering, 35(1), 469–481. https://doi.org/10.1109/TKDE.2021.3079496
Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643
Lai, W.-N., Chen, C. Y. T., & Sun, E. W. (2022). Risk factor extraction with quantile regression method | Annals of Operations Research. 316, 1543–1572.
Li, H., Zhang, X., Li, Z., & Zheng, C. (2020). Overview of Machine Learning for Stock Selection Based on Multi-Factor Models. E3S Web of Conferences, 214, 02047. https://doi.org/10.1051/e3sconf/202021402047
Lo, A. W. (2002). The Statistics of Sharpe Ratios. Financial Analysts Journal, 58(4), 36–52. https://doi.org/10.2469/faj.v58.n4.2453
Magdon-Ismail, M., & Atiya, A. F. (2006). Maximum Drawdown (SSRN Scholarly Paper 874069). https://papers.ssrn.com/abstract=874069
Maiti, M. (2021). Quantile regression, asset pricing and investment decision. IIMB Management Review, 33(1), 28–37. https://doi.org/10.1016/j.iimb.2021.03.005
Romano, J. P., & Wolf, M. (2013). Testing for monotonicity in expected asset returns. Journal of Empirical Finance, 23, 93–116. https://doi.org/10.1016/j.jempfin.2013.05.001
Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-0531(76)90046-6
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk*. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Smith, K. W. (2015). Cython: A Guide for Python Programmers. O’Reilly Media, Inc.
Ta, V.-D., Liu, C.-M., & Addis, D. (2018). Prediction and Portfolio Optimization in Quantitative Trading Using Machine Learning Techniques. Proceedings of the 9th International Symposium on Information and Communication Technology, 98–105. https://doi.org/10.1145/3287921.3287963
TEJ. (2024, April 16). TEJ台灣經濟新報. TEJ台灣經濟新報. https://www.tejwin.com/
Tortoriello, R. (2009). Quantitative strategies for achieving alpha. McGraw Hill. https://cir.nii.ac.jp/crid/1130282272615654272
Waskom, M. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Wilbers, I. M., Langtangen, H. P., & Ødegård, Å. (2009). Using Cython to Speed up Numerical Python Programs. Proceedings of MekIT 9, 2009, 496–512.
凱衛資訊. (2024). MultiCharts程式交易操盤軟體. https://www.multicharts.com.tw/
卓育辰. (2021). 結合因子分析與程式交易應用於台股之自動化回測與驗證平台. National Central University.
嘉實資訊. (2024). 台灣程式交易看盤軟體第一領導品牌XQ全球贏家. https://www.xq.com.tw/
張林忠. (2014). 分析師關鍵報告2:張林忠教你程式交易. 寰宇.
董寶蘭. (2010). 程式交易策略實證研究-以投資ETF0050為例. 淡江大學管理科學研究所企業經營碩士在職專班學位論文, 2010, 1–65. https://doi.org/10.6846/TKU.2010.01059
指導教授 許智誠 審核日期 2024-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明