參考文獻 |
Adeodato, P., & Melo, S. (2022). A geometric proof of the equivalence between AUC_ROC and Gini index area metrics for binary classifier performance assessment. 2022 International Joint Conference on Neural Networks (IJCNN), 1–6. https://doi.org/10.1109/IJCNN55064.2022.9892048
Araci, D. (2019). FinBERT: Financial Sentiment Analysis with Pre-trained Language Models (arXiv:1908.10063). arXiv. http://arxiv.org/abs/1908.10063
Bathla, G. (2020). Stock Price prediction using LSTM and SVR. 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 211–214. https://doi.org/10.1109/PDGC50313.2020.9315800
Bouktif, S., Fiaz, A., & Awad, M. (2019). Stock Market Movement Prediction using Disparate Text Features with Machine Learning. 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), 1–6. https://doi.org/10.1109/ICDS47004.2019.8942303
BREIMAN, L. (2001). Random Forests. https://link.springer.com/article/10.1023/A:1010933404324
Chen, C. (2023). Stock Price Prediction Based on the Fusion of CNN-GRU Combined Neural Network and Attention Mechanism. 2023 6th International Conference on Electronics Technology (ICET), 1166–1170. https://doi.org/10.1109/ICET58434.2023.10211379
Chen, H. (2021). Text Mining in Stock Prediction by Traditional Machine Learning and Deep Learning Techniques with Different Financial News. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=108423019&fileName=GC108423019.pdf
Chiao, C., & Wang, Z. (2008, January 7). 臺灣股市委託價格群聚現象之實證研究. 359–380.
CORTES, C., & VAPNIK, V. (1995). Support-vector networks. https://link.springer.com/article/10.1007/BF00994018
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. http://arxiv.org/abs/1810.04805
Fan, X., & Tang, K. (2010). Enhanced Maximum AUC Linear Classifier. 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 1540–1544. https://doi.org/10.1109/FSKD.201f569339
Gandhi, C., Kumar Sarangi, P., Saxena, M., & Sahoo, A. K. (2023). SMS Spam Detection Using Deep Learning Techniques: A Comparative Analysis of DNN Vs LSTM Vs Bi-LSTM. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), 189–194. https://doi.org/10.1109/CISES58720.2023.10183634
Gomes Sousa, M., Sakiyama, K., Souza Rodrigues, L. de, Henrique Moraes, P., Rezende Fernandes, E., & Takashi Matsubara, E. (2019). BERT for Stock Market Sentiment Analysis. https://doi.org/10.1109/ICTAI.2019.00231
Guo, Y. (2020). Stock Price Prediction Based on LSTM Neural Network: The Effectiveness of News Sentiment Analysis. 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME), 1018–1024. https://doi.org/10.1109/ICEMME51517.2020.00206
Guo, Y. (2022). Stock Price Prediction Using Machine Learning. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1672304&dswid=4796
Gupta, A., Dengre, V., Kheruwala, H. A., & Shah, M. (2020). Comprehensive review of text-mining applications in finance. Financial Innovation, 6(1), 39. https://doi.org/10.1186/s40854-020-00205-1
Gupta, H., & Patel, M. (2020). Study of Extractive Text Summarizer Using The Elmo Embedding. https://doi.org/10.1109/I-SMAC49090.2020.9243610
Habeeb, S., Rabbani, M. R., Ahmad, N., Moh’d Ali, M. A., & Bashar, A. (2021). Post COVID-19 challenges for the sustainable entrepreneusrhip. 2021 International Conference on Sustainable Islamic Business and Finance, 154–158. https://doi.org/10.1109/IEEECONF53626.2021.9686341
Hagenau, M., Hauser, M., Liebmann, M., & Neumann, D. (2013). Reading All the News at the Same Time: Predicting Mid-term Stock Price Developments Based on News Momentum. 2013 46th Hawaii International Conference on System Sciences, 1279–1288. https://doi.org/10.1109/HICSS.2013.460
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Ilenia Orlandi, Luca Oneto, & Davide Anguita. (2016). Random Forests Model Selection. https://www.esann.org/sites/default/files/proceedings/legacy/es2016-48.pdf
Insan, H., Suryani Prasetiyowati, S., & Sibaroni, Y. (2023). SMOTE-LOF and Borderline-SMOTE Performance to Overcome Imbalanced Data and Outliers on Classification. https://doi.org/10.1109/ICICyTA60173.2023.10428902
Jaskowiak, P. A., Gesteira Costa, I., & José Gabrielli Barreto Campello, R. (2020). The Area Under the ROC Curve as a Measure of Clustering Quality. https://doi.org/10.1007/s10618-022-00829-0
Khan, S., Rabbani, M. R., Bashar, A., & Kamal, M. (2021). Stock Price Forecasting Using Deep Learning Model. 2021 International Conference on Decision Aid Sciences and Application (DASA), 215–219. https://doi.org/10.1109/DASA53625.2021.9682319
LeCun, Y., Bengio, Y., & Laboratories, T. B. (1995). Convolutional Networks for Images, Speech, and Time-Series.
Leonard, G., Sisnadi, F., Vigo Wardhana, N., Abdul Aziz Al-Ghofari, M., & Suganda Girsang, A. (2022). News Classification Based On News Headline Using SVC Classifier. https://doi.org/10.1109/TSSA56819.2022.10063879
Li, X., Pu, R., & Yuan, Y. (2022). Deep Neural Networks for Stock Market Prediction. 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE), 214–218. https://doi.org/10.1109/CIPAE55637.2022.00053
Liu, D., Chen, A., & Wu, J. (2020). Research on Stock Price Prediction Method Based on Deep Learning. 2020 2nd International Conference on Information Technology and Computer Application (ITCA), 69–72. https://doi.org/10.1109/ITCA52113.2020.00022
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. https://doi.org/10.1109/ICDM.2008.17
Ma, L., & Zhang, Y. (2015). Using Word2Vec to process big text data. https://doi.org/10.1109/BigData.2015.7364114
Meesad, P., & Li, J. (2014). Stock trend prediction relying on text mining and sentiment analysis with tweets. https://doi.org/10.1109/WICT.2014.7077275
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. http://arxiv.org/abs/1301.3781
Murphy, J. J. (1999). Technical Analysis of the Financial Markets (SUB UPD EX). New York Institute of Finance.
Naresh, E., J Ananda, B., S Keerthi, K., & R Tejonidhi, R. (2022). Predicting the Stock Price Using Natural Language Processing and Random Forest Regressor. https://doi.org/10.1109/ICDSIS55133.2022.9915940
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/N18-1202
Preeti, P. (2021). Review on Text Mining: Techniques, Applications and Issues. https://doi.org/10.1109/SMART52563.2021.9676285
Rokach, L. (2005). Decision Trees. https://doi.org/10.1007/0-387-25465-X_9
Sarika, V., Kamal, G. V. S., Pratham, S. V., Deepak, N. V. S. S., & Veneela, T. (2023). An LSTM-Based Model for Stock Price Prediction. 2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS), 1–6. https://doi.org/10.1109/AICERA/ICIS59538.2023.10420270
Scholkopf, B. (1999). Support Vector Method for Novelty Detection. https://proceedings.neurips.cc/paper_files/paper/1999/file/8725fb777f25776ffa9076e44fcfd776-Paper.pdf
Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1643–1647. https://doi.org/10.1109/ICACCI.2017.8126078
Shirui Wang, Wenan Zhou, & Chao Jiang. (2019). A Survey of Word Embeddings Based On Deep Learning. https://www.scribd.com/document/654526359/s00607-019-00768-7
Suganda Girsang, A., & Stanley. (2023). Hybrid LSTM and GRU for Cryptocurrency Price Forecasting Based on Social Network Sentiment Analysis Using FinBERT. https://doi.org/10.1109/ACCESS.2023.3324535
Tseng, C.-K. (2020, June). One class classification on imbalanced datasets with missing value imputation and instance selection. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=107423050&fileName=GC107423050.pdf#
Wijaya, A. Y., Fatichah, C., & Saikhu, A. (2023). Prediction of Stock Trend Using Random Forest Optimization. 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), 1–6. https://doi.org/10.1109/ICAMIMIA60881.2023.10427958
Xing, F. Z., Cambria, E., & Welsch, R. E. (2017). Natural language based financial forecasting: A survey. https://doi.org/10.1007/s10462-017-9588-9
Yang, K., Kpotufe, S., & Feamster, N. (2021). An Efficient One-Class SVM for Anomaly Detection in the Internet of Things. https://www.semanticscholar.org/paper/An-Efficient-One-Class-SVM-for-Anomaly-Detection-in-Yang-Kpotufe/5b76ea2e6e73c05a3698a2d064c93557e282419c |