博碩士論文 111423007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:18.118.254.83
姓名 李權恒(Chuan-Heng Li)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 雙因子選股邏輯對投資組合績效影響之研究
(Performance Evaluation for Stock Selection Strategies of Two Factor Analysis)
相關論文
★ 針對提昇資料倉儲資料庫執行效能之知識管理與相關系統設計★ 以關聯規則探勘為基礎,探討詐騙車手提領型態互動之研究
★ 部落格之網路口碑評比機制平台管理與應用★ 虛擬貨幣交易平台之實現
★ 適用於多種設備的可否認鑑別協定之設計★ 交易程式最佳化的多維度分析平台之設計與建置
★ 多商品多策略程式交易績效曲線比較和分群機制之研究★ 整合分位數回歸分析與單因子選股的股票選股策略回測與績效評估之研究
★ 以工作流程與Portlet為基礎整合學習管理系統以支援課程編組★ 使用服務導向技術建構具支援二線廠客製化能力的電子中樞系統之研究
★ 以流程為中心的Portlet重用性分析★ 應用資料倉儲技術建構平衡計分卡資訊系統之研究-以某消費性電子製造公司人力資源計分卡為例
★ 自動化的產品平台管理與應用★ 以代理人為基礎的資訊系統協助新產品開發流程的自動化
★ 以整合式的教練引導開發以框架為基礎的專案★ 支援新產品研發的整合性知識管理系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 本研究旨在探討因子選股策略在現代金融市場中的應用與效果,特別
是雙因子選股模型在實際投資中的性能比較。隨著大數據技術和量化分析方法
的發展,因子選股已成為識別投資機會的重要工具。本研究採用交集篩選法、
過濾篩選法、加權內插法與加權排名法四種不同的雙因子選股模型進行實證分
析,通過對比各模型在相同回測條件下的表現,評估它們對投資組合績效的影
響。結果顯示,不同的選股策略對於提升回報率及風險管理具有顯著差異。本
研究開發了一個股票回測工具,支援因子分析,並通過多種回測指標檢視績
效。研究結果為投資者提供了一套更客觀、結構化的選股框架,幫助他們在多
變的市場環境中做出更精確的投資決策。
摘要(英) This study aims to explore the application and effectiveness of factor-based stock selection strategies in modern financial markets, with a particular focus on the
performance comparison of two-factor stock selection models in practical investments. With the development of big data technology and quantitative analysis methods, factor-based stock selection has become an important tool for identifying
investment opportunities. This study employs four different two -factor stock election models: Intersection screening method, Filter screening method, Weighted interpolation method, and Weighted ranking method, to conduct empirical analysis.
By comparing the performance of each model under the same backtesting conditions,
the study evaluates their impact on portfolio performance. The results indicate
significant differences among the stock selection strategies in terms of improving
returns and managing risk. This research develops a stock backtesting tool that
supports factor analysis and examines performance through various backtesting
indicators. The findings provide investors with a more objective and structured stock
selection framework, assisting them in making more precise investment decisions in a
volatile market environment.
關鍵字(中) ★ 量化交易
★ 因子選股
★ 股市回測平台
★ 金融大數據
★ Python
關鍵字(英) ★ Quantitative Trading
★ Factor-based Stock Selection
★ Stock Market Backtesting Platform
★ Financial Big Data
★ Python
論文目次 摘要 I
ABSTRACT II
目錄 III
圖目錄 VII
表目錄 IX
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 3
二、 文獻回顧 5
2.1 量化交易 5
2.2 因子選股 5
2.3 雙(多)因子的綜效 6
2.4 推論統計 8
2.4.1 Shapiro-Wilk 檢定 8
2.4.2 Mann-Whitney U檢定 8
2.4.3 Kruskal-Wallis 檢定 8
2.4.4 Dunn 事後檢定 8
2.4.5 獨立樣本 t 檢定 9
2.4.6 ANOVA檢定 9
2.5 OLS回歸分析 10
2.6 主導因子 11
三、 系統設計與實作 12
3.1 系統架構 12
3.1.1 資料存取層 12
3.1.2 商業邏輯層 13
3.1.3 展示層 16
3.2 雙因子選股模型設計 16
3.2.1 交集篩選法 17
3.2.2 過濾篩選法 18
3.2.3 加權內插法 20
3.2.4 加權排名法 22
3.3 回測績效比較模型 24
3.3.1 獲利能力分析 24
3.3.2 抗風險能力分析 24
3.3.3 分散風險能力分析 25
3.3.4 預測能力分析 25
3.3.5 流動性分析 25
3.4 研究流程 26
3.4.1 常態分佈檢驗 27
3.4.2 驗證研究問題1 27
3.4.3 驗證研究問題2 28
3.4.4 驗證研究問題3 28
3.4.5 驗證研究問題4 28
3.4.6 驗證研究問題5 28
四、 系統驗證與分析 30
4.1 實驗變數 30
4.2 回測參數 32
4.3 實驗設計 33
4.3.1 實驗流程 33
4.3.2 環境設定 33
4.4 實驗結果 34
4.4.1 實驗一 檢視回測績效是否呈常態分佈 34
4.4.2 實驗二 檢視雙因子是否優於單因子選股 38
4.4.3 實驗三 四種雙因子選股模型間是否存在差異 41
4.4.4 實驗四 兩種加權雙因子選股模型間是否存在差異 44
4.4.5 實驗五 驗證過濾篩選法的入選股數量是否顯著大於過濾篩選法47
4.4.6 實驗六 檢視是否存在特定因子搭配特定選股模型組合其各指標能夠顯著優於其他組合 48
五、 結論 60
5.1 結論 60
5.2 研究限制 61
5.3 未來建議 62
參考文獻 63
參考文獻 Abensur, E. O., & Carvalho, W. P. de. (2022). Improving Portfolio Selection by Balancing Liquidity-Risk-Return: Evidence from Stock Markets. Theoretical Economics Letters, 12(2), Article 2. https://doi.org/10.4236/tel.2022.122027
Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. The Journal of Finance, 52(1), 57–82. https://doi.org/10.2307/2329556
Chou, Y.-H., Jiang, Y.-C., Hsu, Y.-R., Kuo, S.-Y., & Kuo, S.-Y. (2021). A Weighted Portfolio Optimization Model Based on the Trend Ratio, Emotion Index, and ANGQTS. IEEE Transactions on Emerging Topics in Computational Intelligence, PP, 1–16. https://doi.org/10.1109/TETCI.2021.3118041
Cortina-Borja, M., Smith, A. D., Combarros, O., & Lehmann, D. J. (2009). The synergy factor: A statistic to measure interactions in complex diseases. BMC Research Notes, 2, 105. https://doi.org/10.1186/1756-0500-2-105
Cressie, N. a. C., & Whitford, H. J. (1986). How to Use the Two Sample t-Test. Biometrical Journal, 28(2), 131–148. https://doi.org/10.1002/bimj.4710280202
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. https://doi.org/10.1016/0304-405X(93)90023-5
Fama, E. F., & French, K. R. (2017). Choosing Factors (SSRN Scholarly Paper 2668236). https://doi.org/10.2139/ssrn.2668236
Fletcher, J. (2019). How many factors are important in U.K. stock returns? The European Journal of Finance, 25(13), 1234–1249. https://doi.org/10.1080/1351847X.2019.1586745
Gaocheng Yuan. (2023, March). Portfolio Selection Based on a Four-Dimensional Weighted Scoring Model. https://www.researchgate.net/publication/369432354_Portfolio_Selection_Based_on_a_Four-Dimensional_Weighted_Scoring_Model
Ha, Y., & Zhang, H. (2019). Liquidity Risks, Transaction costs and Online Portfolio Selection (SSRN Scholarly Paper 3378592). https://doi.org/10.2139/ssrn.3378592
Houweling, P., & van Zundert, J. (2016). Factor Investing in the Corporate Bond Market (SSRN Scholarly Paper 2516322). https://doi.org/10.2139/ssrn.2516322
Koshiyama, A., & Firoozye, N. (2019). Avoiding Backtesting Overfitting by Covariance-Penalties: An empirical investigation of the ordinary and total least squares cases (arXiv:1905.05023). arXiv. https://doi.org/10.48550/arXiv.1905.05023
Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441
Liu, Y., Liu, Q., Zhao, H., Pan, Z., & Liu, C. (2020). Adaptive Quantitative Trading: An Imitative Deep Reinforcement Learning Approach. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02), Article 02. https://doi.org/10.1609/aaai.v34i02.5587
Magdon-Ismail, M., & Atiya, A. F. (2006). Maximum Drawdown (SSRN Scholarly Paper 874069). https://papers.ssrn.com/abstract=874069
Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50–60. https://doi.org/10.1214/aoms/1177730491
McHugh, M. L. (2011). Multiple comparison analysis testing in ANOVA. Biochemia Medica, 21(3), 203–209.
Nicoletti, N., & Li, Y. (2011). Hong Kong: Risk or Alpha? Factor Analysis on the Hong Kong Stock Market – Additional Risk Factors or Anomalies? (SSRN Scholarly Paper 1870584). https://doi.org/10.2139/ssrn.1870584
O’Shaughnessy, J. P. (2012). What works on Wall Street: The classic guide to the best-performing investment strategies of all time (4th ed). McGraw Hill. http://catdir.loc.gov/catdir/enhancements/fy1210/2011036391-b.html
Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709
Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk*. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
Sokkhey, P., & Okazaki, T. (2020). Study on Dominant Factor for Academic Performance Prediction using Feature Selection Methods. International Journal of Advanced Computer Science and Applications, 11(8). https://doi.org/10.14569/IJACSA.2020.0110862
Su, L., Wang, Y., & Zhang, S. (2023). Research on Multi-factor Fundamental Stock Selection. Highlights in Business, Economics and Management, 13, 98–105. https://doi.org/10.54097/hbem.v13i.8631
Thomas, S. (2017). Risk Free Model for Risky Stock Market: Evidence from Indian Stock Market (SSRN Scholarly Paper 2976361). https://doi.org/10.2139/ssrn.2976361
Tortoriello, R. (2009). Quantitative strategies for achieving alpha. McGraw Hill. http://site.ebrary.com/id/10251622
Weisberg, P. S. (2014). Applied Linear Regression 4E.
Xiang, T., Qiang, F., Liu, G., Liu, C., & Ai, N. (2023). Soil Quality Evaluation and Dominant Factor Analysis of Economic Forest in Loess Area of Northern Shaanxi. Forests, 14(6), Article 6. https://doi.org/10.3390/f14061179
Yeh, I.-C., & Liu, Y.-C. (2020). Discovering optimal weights in weighted-scoring stock-picking models: A mixture design approach. Financial Innovation, 6(1), 41. https://doi.org/10.1186/s40854-020-00209-x
Zhang, R., & Cao, T. (2018). Multi-factor Stock Selection Model Based on Adaboost. Business and Economic Research, 8(4), Article 4. https://doi.org/10.5296/ber.v8i4.13942
劉浩平. (2024) 整合分位數回歸分析與單因子選股的股票選股策略回測與績效評估之研究.
葉怡成. (2020). 台股研究室: 36種投資模型操作績效總體檢! 臺灣廣廈出版 : 知遠文化總經銷.
葉怡成, & 劉泰男. (2016). 以實驗計畫法與迴歸分析建構多因子選股系統. Journal of Data Analysis, 11(1), 167–205. https://doi.org/10.6338/JDA.201602_11(1).0007
葉怡成, 吳盛富著., 葉怡成 (金融), & 吳盛富. (2013). 臺灣股市何種選股模型行得通? (Chu ban). 臺灣金融研訓院.
指導教授 許智誠(Jyh-Cheng Hsu) 審核日期 2024-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明