參考文獻 |
Agustina Pertiwi, D. A., Ahmad, K., Nikmah, T. L., Alamsyah, Prasetiyo, B., & Muslim, M. A. (2023). Combination of Stacking with Genetic Algorithm Feature Selection to Improve Default Prediction in P2P Lending. 2023 5th International Conference on Cybernetics and Intelligent System (ICORIS), 1–5.
Alam, T. M., Shaukat, K., Hameed, I. A., Luo, S., Sarwar, M. U., Shabbir, S., Li, J., & Khushi, M. (2020). An Investigation of Credit Card Default Prediction in the Imbalanced Datasets. IEEE Access, 8, 201173–201198.
Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3), 175–185.
Ayogu, I. I., Popoọla, O. S., Mebawọndu, Ọlamatanmi Josephine, Ugwu, C. C., & Adetunmbi, A. O. (2022). Performance Evaluation of Feature Selection Techniques for Credit Default Prediction. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5.
Batista, G. E. A. P. A., Bazzan, A., & Monard, M. C. (2003). Balancing Training Data for Automated Annotation of Keywords: A Case Study. WOB.
Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1), 20–29.
Ben-Bassat, M. (1982). Pattern Recognition and Reduction of Dimensionality. In Handbook of Statistics (Vol. 2, pp. 773–791). Elsevier.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Applications, 39(3), 3446–3453.
Cao, P., Zhao, D., & Zaiane, O. (2013). An Optimized Cost-Sensitive SVM for Imbalanced Data Learning. In J. Pei, V. S. Tseng, L. Cao, H. Motoda, & G. Xu (Eds.), Advances in Knowledge Discovery and Data Mining (pp. 280–292). Springer.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Cox, D. R. (1958). The Regression Analysis of Binary Sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215–232.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(1), 131–156.
Durand, D. (1941). Risk Elements in Consumer Instalment Financing. NBER.
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220–239.
Han, J., Pei, J., & Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 1322–1328.
He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.
Jiang, Z., Su, J., & Zhou, L. (2023). Credit default prediction based on genetic algorithm improved neural network. 2023 9th International Conference on Systems and Informatics (ICSAI), 1–5.
Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., & Togneri, R. (2018). Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3573–3587.
Li, K., Zhang, W., Lu, Q., & Fang, X. (2014). An Improved SMOTE Imbalanced Data Classification Method Based on Support Degree. 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, 34–38.
Liu, X., & Huang, J. (2012). Genetic algorithm-based feature selection method for credit risk analysis. Proceedings of 2012 2nd International Conference on Computer Science and Network Technology, 2233–2236.
Lv, M., Ren, Y., & Chen, Y. (2019). Research on imbalanced data: Based on SMOTE-AdaBoost algorithm. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 1165–1170.
Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.
Pozzolo, A. D., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating Probability with Undersampling for Unbalanced Classification. 2015 IEEE Symposium Series on Computational Intelligence, 159–166.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Rawat, S. S., & Kumar Mishra, A. (2023). The Best ML Classifier(s): An empirical study on the learning of imbalanced and resampled credit card data. 2023 Second International Conference on Informatics (ICI), 1–6.
Shamsudin, H., Yusof, U. K., Jayalakshmi, A., & Akmal Khalid, M. N. (2020). Combining oversampling and undersampling techniques for imbalanced classification: A comparative study using credit card fraudulent transaction dataset. 2020 IEEE 16th International Conference on Control & Automation (ICCA), 803–808.
Shi, X., Kong, F., & Li, H. (2021). Research on Credit Evaluation Model for High-Dimensional Imbalanced Data. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 162–166.
Song, Y., & Peng, Y. (2019). A MCDM-Based Evaluation Approach for Imbalanced Classification Methods in Financial Risk Prediction. IEEE Access, 7, 84897–84906.
Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.
TOMEK, I. (1976). TWO MODIFICATIONS OF CNN. TWO MODIFICATIONS OF CNN.
Veganzones, D., & Séverin, E. (2018). An investigation of bankruptcy prediction in imbalanced datasets. Decision Support Systems, 112, 111–124.
Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2023). Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique. 2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI), 121–126.
Wasikowski, M., & Chen, X. (2010). Combating the Small Sample Class Imbalance Problem Using Feature Selection. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1388–1400.
Wilson, D. L. (1972). Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE Transactions on Systems, Man, and Cybernetics, SMC-2(3), 408–421.
Wu, Y., Xie, Z., Ji, S., Liu, Z., Zhang, X., Lin, C., Deng, S., Zhou, J., Wang, T., & Beyah, R. (2023). Fraud-Agents Detection in Online Microfinance: A Large-Scale Empirical Study. IEEE Transactions on Dependable and Secure Computing, 20(2), 1169–1185.
Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems and Their Applications, 13(2), 44–49.
Yen, S.-J., & Lee, Y.-S. (2009). Cluster-based under-sampling approaches for imbalanced data distributions. Expert Systems with Applications, 36(3, Part 1), 5718–5727.
Zhang, H., He, H., & Zhang, W. (2018). Classifier selection and clustering with fuzzy assignment in ensemble model for credit scoring. Neurocomputing, 316, 210–221.
Zhong, Y., & Wang, H. (2023). Internet Financial Credit Scoring Models Based on Deep Forest and Resampling Methods. IEEE Access, 11, 8689–8700.
金管會(2023). 金管會公布金融業運用人工智慧(AI)之核心原則及政策. |