博碩士論文 111423030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:147 、訪客IP:18.117.145.109
姓名 林莉庭(Li-Ting Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 基於個性化項目頻率和時間注意力的下一個購物籃推薦混合模型
(PIFTA4Rec: A Hybrid Model of Personalized Item Frequency and Temporal Attention for Next-basket Recommendation)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 在資訊量爆炸的數位時代中,推薦系統扮演著至關重要的角色。它們不僅緩解資訊過載的問題,還能顯著提升用戶體驗並增加電子商務的收入潛力。因此,推薦系統在多種場景中得到廣泛應用,尤其是在下一個購物籃推薦任務上。然而,傳統推薦方法傾向於僅關注短期的局部關係,而忽略了長期的全局關係。雖然基於神經網絡的推薦方法已改善了推薦性能,但仍存在一些侷限與進步空間,特別是在利用個性化項目頻率(PIF進行推薦。 PIF是一種基於用戶對商品重複購買行為的衡量指標,在多個推薦任務中已證明其有效性和價值。本研究認為,將這種個人化重複購買行 為的向量模型結合進現有的神經網絡模型中,將有助於進一步提升推薦效率與準確性。 有鑑於此,本研究提出了一個結合個性化項目頻率資訊與時間注意力機制的混合模型,稱為 PIFTA4Rec。該模型整合傳統資料探勘和當代深度學習技術的優勢,充分利用 KNN 的局部敏感性對帶有 PIF 資訊的向量數據點進行精確預測。同時,結合了考慮每次購買時間的時間注意力機制和 Transformer 的多頭注意力機制,以深入學習用戶與項目之間的複雜關聯資訊。最終,本模型整合兩個推薦預測過程的結果,以生成最終的推薦結果。在本研究中,我們將 這樣的技術融合模型 PIFTA4Rec 在兩個真實世界資料集中進行了實驗。結果顯示,本研究提出之方法在推薦性能上優於現有的其他下一個購物籃推薦方法,顯著證實了本模型的有效性與穩定性。
摘要(英) In the digital age of information explosion, recommendation systems play a crucial role. They not only alleviate the problem of information overload but also significantly enhance user experience and increase the revenue potential of e-commerce. Consequently, recommendation systems are widely applied in various scenarios, especially in the task of predicting the next basket. However, traditional recommendation methods tend to focus only on short-term local relationships, overlooking long-term global interactions. Although recommendation methods based on neural networks have improved performance, there are still limitations and room for improvement, particularly in the use of Personalized Item Frequency (PIF). PIF, a metric based on the user′s repeated purchase behavior, has proven its effectiveness and value in numerous recommendation tasks. This study suggests that integrating this vector model of personalized repeated purchase behavior into existing neural network models will further enhance the efficiency and accuracy of recommendations. In light of this, the study proposes a hybrid model that combines Personalized Item Frequency information with a Temporal Attention mechanism, called PIFTA4Rec. This model integrates the advantages of traditional data mining and contemporary deep learning techniques, leveraging the local sensitivity of K Nearest Neighbor (KNN) to precisely predict vector data points containing PIF information. Simultaneously, it incorporates a temporal attention mechanism that considers the timing of each purchase, along with the multi-head attention mechanism of Transformers, to deeply learn the complex associative information between users and items. Ultimately, the model integrates the results of these two recommendation prediction processes to generate the final recommendation outcomes. In this study, the hybrid model PIFTA4Rec was experimentally tested on two real-world datasets. The results demonstrated that the proposed method outperformed other existing next-basket recommendation methods in terms of recommendation performance, significantly confirming the model′s effectiveness and stability.
關鍵字(中) ★ 下一個購物籃推薦
★ 個性化項目頻率
★ 深度學習
★ K Nearest Neighbor
★ Item2Vec
關鍵字(英) ★ Next Basket Recommendation
★ Personalized Item Frequency
★ Deep Learning
★ K Nearest Neighbor
★ Item2Vec
論文目次 Contents
摘要
i
ABSTRACT ii
誌謝
iv
List of Figures vii
List of Tables viii
1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Motivation 3
1.3 Research Objectives 5
2. RELATED WORK 8
2.1 Traditional Methods 8
2.1.1 Sequential Methods 8
2.1.2 Collaborative Filtering Methods 9
2.1.3 Hybrid Methods 11
2.2 Neural Network Methods 12
2.3 Personalized Item Frequency & the Difficulties Encountered in Learning Item Frequency 15
2.4 Summary 17
3. PROPOSED RESEARCH 19
3.1 Problem Definition and Symbol Description 19
3.2 Preprocessing 23
3.2.1 KIM – User Embedding Vector & Neighbor Embedding Vector 23
3.2.2 DLIM –Basket Embedding Vector 25
3.3 Model 29
3.3.1 KNN-based Information Module (KIM) 29 3.3.2 Deep Learning-based Information Module (DLIM) 29 3.3.3 Final Prediction Module (FPM) 33 4. EXPERIMENTAL DESIGN 35
4.1 Datasets 35
4.2 Baselines 36
4.3 Evaluation Metrics 37
4.4 Experimental Setting and Platform 38 5. EXPERIMENTAL RESULTS 40
5.1 Experiment 1: Comparison with Baselines 40
5.2 Experiment 2: Sensitivity Analysis 43
5.3 Experiment 3: Ablation Experiment 51
6. SUMMARY 54
6.1 Conclusion 54
6.2 Future Work 55
REFERENCES 57
參考文獻 REFERENCES
[1] Darban, Z.Z. and M.H. Valipour, GHRS: Graph-based hybrid recommendation system with application to movie recommendation. Expert Systems with Applications, 2022. 200: p. 116850.
[2] Zhang, Z. and B. Wang, Prompt learning for news recommendation. arXiv preprint arXiv:2304.05263, 2023.
[3] Singh, J., An efficient deep neural network model for music classification. International Journal of Web Science, 2022. 3(3): p. 236-248.
[4] Liao, J., W. Zhou, F. Luo, J. Wen, M. Gao, X. Li, and J. Zeng, SocialLGN: Light graph convolution network for social recommendation. Information Sciences, 2022. 589: p. 595-607.
[5] Steck, H. Evaluation of recommendations: rating-prediction and ranking. in Proceedings of the 7th ACM conference on Recommender systems. 2013.
[6] Cremonesi, P., Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation tasks. in Proceedings of the fourth ACM conference on Recommender systems. 2010.
[7] Anelli, V.W., A. Bellogín, T. Di Noia, D. Jannach, and C. Pomo. Top-n recommendation algorithms: A quest for the state-of-the-art. in Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization. 2022.
[8] Deshpande, M. and G. Karypis, Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst., 2004. 22(1): p. 143–177.
[9] Karypis, G. Evaluation of item-based top-n recommendation algorithms. in Proceedings of the tenth international conference on Information and knowledge management. 2001.
[10] Palumbo, E., G. Rizzo, and R. Troncy. Entity2rec: Learning user-item relatedness from knowledge graphs for top-n item recommendation. in Proceedings of the eleventh ACM conference on recommender systems. 2017.
[11] Wang, J., K. Ding, L. Hong, H. Liu, and J. Caverlee. Next-item recommendation with sequential hypergraphs. in Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval. 2020.
[12] Ariannezhad, M., M. Li, S. Schelter, and M. de Rijke. A personalized neighborhood-based model for within-basket recommendation in grocery shopping. in Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. 2023.
[13] Qin, Y., P. Wang, and C. Li. The world is binary: Contrastive learning for denoising next basket recommendation. in Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval. 2021.
[14] Ariannezhad, M., S. Jullien, M. Li, M. Fang, S. Schelter, and M. de Rijke. ReCANet: A repeat consumption-aware neural network for next basket recommendation in grocery shopping. in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022.
[15] Shen, Y., B. Ou, and R. Li, MBN: Towards multi-behavior sequence modeling for next basket recommendation. ACM Transactions on Knowledge Discovery from Data (TKDD), 2022. 16(5): p. 1-23.
[16] He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, Neural Collaborative Filtering, in Proceedings of the 26th International Conference on World Wide Web. 2017, International World Wide Web Conferences Steering Committee: Perth, Australia. p. 173–182.
[17] Lops, P., M. De Gemmis, and G. Semeraro, Content-based recommender systems: State of the art and trends. Recommender systems handbook, 2011: p. 73-105.
[18] Koren, Y., R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems. Computer, 2009. 42(8): p. 30-37.
[19] Xia, L., C. Huang, Y. Xu, J. Zhao, D. Yin, and J. Huang. Hypergraph contrastive collaborative filtering. in Proceedings of the 45th International ACM SIGIR conference on research and development in information retrieval. 2022.
[20] Srifi, M., A. Oussous, A. Ait Lahcen, and S. Mouline, Recommender systems based on collaborative filtering using review texts—a survey. Information, 2020. 11(6): p. 317.
[21] Wang, X., X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative filtering. in Proceedings of the 42nd international ACM SIGIR conference on Research and development in Information Retrieval. 2019.
[22] Xia, X., H. Yin, J. Yu, Q. Wang, L. Cui, and X. Zhang. Self-supervised hypergraph convolutional networks for session-based recommendation. in Proceedings of the AAAI conference on artificial intelligence. 2021.
[23] Tang, J. and K. Wang. Personalized top-n sequential recommendation via convolutional sequence embedding. in Proceedings of the eleventh ACM international conference on web search and data mining. 2018.
[24] Kumar, G., H. Jerbi, and M.P. O’Mahony, A sequence-based and context modelling framework for recommendation. Expert Systems with Applications, 2021. 175: p. 114665.
[25] Damak, K., O. Nasraoui, and W.S. Sanders, Sequence-based explainable hybrid song recommendation. Frontiers in big Data, 2021. 4: p. 693494.
[26] Wang, D., D. Xu, D. Yu, and G. Xu, Time-aware sequence model for next-item recommendation. Applied Intelligence, 2021. 51: p. 906-920.
[27] Salehinejad, H., S. Sankar, J. Barfett, E. Colak, and S. Valaee, Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.
[28] Lin, T., Y. Wang, X. Liu, and X. Qiu, A survey of transformers. AI Open, 2022.
[29] Anderson, A., R. Kumar, A. Tomkins, and S. Vassilvitskii. The dynamics of repeat consumption. in Proceedings of the 23rd international conference on World wide web. 2014.
[30] Jacoby, J. and D.B. Kyner, Brand loyalty vs. repeat purchasing behavior. Journal of Marketing research, 1973. 10(1): p. 1-9.
[31] Ren, P., Z. Chen, J. Li, Z. Ren, J. Ma, and M. De Rijke. Repeatnet: A repeat aware neural recommendation machine for session-based recommendation. in Proceedings of the AAAI Conference on Artificial Intelligence. 2019.
[32] Rappaz, J., J. McAuley, and K. Aberer. Recommendation on live-streaming platforms: Dynamic availability and repeat consumption. in Proceedings of the 15th ACM Conference on Recommender Systems. 2021.
[33] Wang, C., M. Zhang, W. Ma, Y. Liu, and S. Ma. Modeling item-specific temporal dynamics of repeat consumption for recommender systems. in The world wide web conference. 2019.
[34] Hu, H., X. He, J. Gao, and Z.-L. Zhang. Modeling personalized item frequency information for next-basket recommendation. in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.
[35] Hu, H. and X. He. Sets2sets: Learning from sequential sets with neural networks. in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019.
[36] Wan, M., D. Wang, J. Liu, P. Bennett, and J. McAuley. Representing and recommending shopping baskets with complementarity, compatibility and loyalty. in Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018.
[37] Gu, W., S. Dong, and Z. Zeng, Increasing recommended effectiveness with markov chains and purchase intervals. Neural Computing and Applications, 2014. 25: p. 1153-1162.
[38] Shani, G., D. Heckerman, R.I. Brafman, and C. Boutilier, An MDP-based recommender system. Journal of Machine Learning Research, 2005. 6(9).
[39] Bokde, D., S. Girase, and D. Mukhopadhyay, Matrix factorization model in collaborative filtering algorithms: A survey. Procedia Computer Science, 2015. 49: p. 136-146.
[40] Rendle, S. Factorization machines. in 2010 IEEE International conference on data mining. 2010. IEEE.
[41] Loni, B., Y. Shi, M. Larson, and A. Hanjalic. Cross-domain collaborative filtering with factorization machines. in Advances in Information Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings 36. 2014. Springer.
[42] Chen, C., C. Hou, J. Xiao, and X. Yuan, Purchase behavior prediction in e-commerce with factorization machines. IEICE TRANSACTIONS on Information and Systems, 2016. 99(1): p. 270-274.
[43] Wei, S., N. Ye, S. Zhang, X. Huang, and J. Zhu. Item-based collaborative filtering recommendation algorithm combining item category with interestingness measure. in 2012 international conference on computer science and service system. 2012. IEEE.
[44] Tewari, A.S. and A.G. Barman, Collaborative recommendation system using dynamic content based filtering, association rule mining and opinion mining. International Journal of Intelligent Engineering & Systems, 2017. 10(5).
[45] Zhu, H., B. Huberman, and Y. Luon. To switch or not to switch: understanding social influence in online choices. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2012.
[46] Kumar, R., B. Verma, and S.S. Rastogi, Social popularity based SVD++ recommender system. International Journal of Computer Applications, 2014. 87(14).
[47] Javari, A. and M. Jalili, Accurate and novel recommendations: an algorithm based on popularity forecasting. ACM Transactions on Intelligent Systems and Technology (TIST), 2014. 5(4): p. 1-20.
[48] He, R. and J. McAuley. Fusing similarity models with markov chains for sparse sequential recommendation. in 2016 IEEE 16th international conference on data mining (ICDM). 2016. IEEE.
[49] Rendle, S., C. Freudenthaler, and L. Schmidt-Thieme. Factorizing personalized markov chains for next-basket recommendation. in Proceedings of the 19th international conference on World wide web. 2010.
[50] Wang, P., J. Guo, Y. Lan, J. Xu, S. Wan, and X. Cheng. Learning hierarchical representation model for nextbasket recommendation. in Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval. 2015.
[51] Yu, F., Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent model for next basket recommendation. in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval. 2016.
[52] Wang, S., L. Hu, Y. Wang, Q.Z. Sheng, M. Orgun, and L. Cao. Intention nets: psychology-inspired user choice behavior modeling for next-basket prediction. in Proceedings of the AAAI Conference on Artificial Intelligence. 2020.
[53] Xu, C., P. Zhao, Y. Liu, J. Xu, V.S.S. S. Sheng, Z. Cui, X. Zhou, and H. Xiong. Recurrent convolutional neural network for sequential recommendation. in The world wide web conference. 2019.
[54] Huang, C., X. Wu, X. Zhang, C. Zhang, J. Zhao, D. Yin, and N.V. Chawla. Online purchase prediction via multi-scale modeling of behavior dynamics. in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 2019.
[55] Zhang, S., Y. Tay, L. Yao, and A. Sun, Next item recommendation with self-attention. arXiv preprint arXiv:1808.06414, 2018.
[56] Bai, T., J.-Y. Nie, W.X. Zhao, Y. Zhu, P. Du, and J.-R. Wen. An attribute-aware neural attentive model for next basket recommendation. in The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018.
[57] Chen, Y., J. Li, C. Liu, C. Li, M. Anderle, J. McAuley, and C. Xiong, Modeling dynamic attributes for next basket recommendation. arXiv preprint arXiv:2109.11654, 2021.
[58] Liu, Z., M. Wan, S. Guo, K. Achan, and P.S. Yu. Basconv: Aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network. in Proceedings of the 2020 SIAM International Conference on Data Mining. 2020. SIAM.
[59] Pang, Y., L. Wu, Q. Shen, Y. Zhang, Z. Wei, F. Xu, E. Chang, B. Long, and J. Pei. Heterogeneous global graph neural networks for personalized session-based recommendation. in Proceedings of the fifteenth ACM international conference on web search and data mining. 2022.
[60] Liu, Z., X. Li, Z. Fan, S. Guo, K. Achan, and S.Y. Philip. Basket recommendation with multi-intent translation graph neural network. in 2020 IEEE International Conference on Big Data (Big Data). 2020. IEEE.
[61] Yang, J., J. Xu, J. Tong, S. Gao, J. Guo, and J. Wen, Pre-training of context-aware item representation for next basket recommendation. arXiv preprint arXiv:1904.12604, 2019.
[62] Liu, T. and B. Liu. Next basket recommendation based on graph attention network and transformer. in Journal of Physics: Conference Series. 2022. IOP Publishing.
[63] Sun, L., Y. Bai, B. Du, C. Liu, H. Xiong, and W. Lv. Dual sequential network for temporal sets prediction. in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020.
[64] Faggioli, G., M. Polato, and F. Aiolli. Recency aware collaborative filtering for next basket recommendation. in Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. 2020.
[65] Ying, H., F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu. Sequential recommender system based on hierarchical attention network. in IJCAI International Joint Conference on Artificial Intelligence. 2018.
[66] Luo, Y., Q. Liu, and Z. Liu. Stan: Spatio-temporal attention network for next location recommendation. in Proceedings of the web conference 2021. 2021.
[67] Rong, X., word2vec parameter learning explained. arXiv preprint arXiv:1411.2738, 2014.
[68] Barkan, O. and N. Koenigstein. Item2vec: neural item embedding for collaborative filtering. in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). 2016. IEEE.
[69] Li, M., S. Jullien, M. Ariannezhad, and M. de Rijke, A next basket recommendation reality check. ACM Transactions on Information Systems, 2023. 41(4): p. 1-29.
[70] Le, D.-T., H.W. Lauw, and Y. Fang, Correlation-sensitive next-basket recommendation. 2019.
[71] Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[72] Yu, Y., X. Si, C. Hu, and J. Zhang, A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 2019. 31(7): p. 1235-1270.
[73] Dey, R. and F.M. Salem. Gate-variants of gated recurrent unit (GRU) neural networks. in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). 2017. IEEE.
[74] Fan, J., K. Zhang, Y. Huang, Y. Zhu, and B. Chen, Parallel spatio-temporal attention-based TCN for multivariate time series prediction. Neural Computing and Applications, 2023. 35(18): p. 13109-13118.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2024-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明