參考文獻 |
1.呂旻娟. (2013). 國際原油價格與美元匯率變動 對國籍航空公司財務績效影響之研究 [碩士論文, 國立臺北大學]. 臺灣博碩士論文知識加值系統. 新北市.
2.李培煜. (2021). 時間序列ARIMA與深度學習LSTM預測模型之比較:以台灣股票市場為例 [碩士論文, 東吳大學]. 臺灣博碩士論文知識加值系統. 台北市.
3.莊國誠. (2022). LSTM模型對國立大專院校用電量進行預測–以國立陽明交通大學光復校區為例 [碩士論文, 國立陽明交通大學]. 臺灣博碩士論文知識加值系統. 新竹市.
4.劉淳毅. (2016). 航空燃油價格與上市國籍航空公司股價長期關係之研究 [碩士論文, 國立高雄應用科技大學]. 臺灣博碩士論文知識加值系統. 高雄市.
5.Bashiri Behmiri, N., & Pires Manso, J. R. (2013). Crude oil price forecasting techniques: a comprehensive review of literature. Available at SSRN 2275428.
6.Box George, E., Jenkins Gwilym, M., Reinsel Gregory, C., & Ljung Greta, M. (1976). Time series analysis: forecasting and control. San Francisco: Holden Bay.
7.Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250.
8.Cheng, M.-L., Ching-Wu, C., & Hsiu-Li, H. (2023). A study of univariate forecasting methods for crude oil price. Maritime Business Review, 8(1), 32-47.
9.De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
10.Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669.
11.Gao, S., & Lei, Y. (2017). A new approach for crude oil price prediction based on stream learning. Geoscience Frontiers, 8(1), 183-187.
12.Govind, G. R., & Babu, A. S. (2023). Hybrid Deep Learning Model to Forecast Crude Oil Price. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 19-23). IEEE.
13.Graves, A. (2012). Long Short-Term Memory. In A. Graves (Ed.), Supervised Sequence Labelling with Recurrent Neural Networks (pp. 37-45). Springer Berlin Heidelberg.
14.Guo, J. (2019, 8-10 Nov. 2019). Oil Price Forecast Using Deep Learning and ARIMA. 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI),
15.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.
16.Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
17.Li, T., Zhong, J., & Huang, Z. (2019). Potential Dependence of Financial Cycles between Emerging and Developed Countries: Based on ARIMA-GARCH Copula Model. Emerging Markets Finance and Trade, 56(6), 1237-1250.
18.Li, Z., Dong, H., Floros, C., Charemis, A., & Failler, P. (2021). Re-examining Bitcoin Volatility: A CAViaR-based Approach. Emerging Markets Finance and Trade, 58(5), 1320-1338.
19.Lim, B., & Zohren, S. (2020). Time Series Forecasting With Deep Learning: A Survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209.
20.Mabro, R. (1987). Netback pricing and the oil price collapse of 1986.
21.McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12.
22.Ng, K. S., Farooq, D., & Yang, A. (2021). Global biorenewable development strategies for sustainable aviation fuel production. Renewable and Sustainable Energy Reviews, 150, 111502.
23.Ouyang, Z.-s., Yang, X.-t., & Lai, Y. (2021). Systemic financial risk early warning of financial market in China using Attention-LSTM model. The North American Journal of Economics and Finance, 56, 101383.
24.Pabuçcu, H., Ongan, S., & Ongan, A. (2020). Forecasting the movements of Bitcoin prices: an application of machine learning algorithms. Quantitative Finance and Economics, 4(4), 679-692.
25.Ronchetti, E. M., & Huber, P. J. (2009). Robust statistics. John Wiley & Sons Hoboken, NJ, USA.
26.Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
27.Rusman, J. A., Chunady, K., Makmud, S. T., Setiawan, K. E., & Hasani, M. F. (2023). Crude Oil Price Forecasting: A Comparative Analysis of ARIMA, GRU, and LSTM Models. In 2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED) (pp. 1-6). IEEE.
28.Tukey, J. W. (1977). Exploratory data analysis (Vol. 2). Reading, MA.
29.Wallach, D., & Goffinet, B. (1989). Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecological modelling, 44(3-4), 299-306.
30.Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82.
31.Wu, N., Green, B., Ben, X., & O′Banion, S. (2020). Deep transformer models for time series forecasting: The influenza prevalence case. arXiv preprint arXiv:2001.08317.
32.Yamak, P. T., Yujian, L., & Gadosey, P. K. (2019). A comparison between arima, lstm, and gru for time series forecasting. Proceedings of the 2019 2nd international conference on algorithms, computing and artificial intelligence,
33.Zakeri, B., Paulavets, K., Barreto-Gomez, L., Echeverri, L. G., Pachauri, S., Boza-Kiss, B., Zimm, C., Rogelj, J., Creutzig, F., Ürge-Vorsatz, D., Victor, D. G., Bazilian, M. D., Fritz, S., Gielen, D., McCollum, D. L., Srivastava, L., Hunt, J. D., & Pouya, S. (2022). Pandemic, War, and Global Energy Transitions. Energies, 15(17), Article 6114.
34.Zhang, K., & Hong, M. (2022). Forecasting crude oil price using LSTM neural networks. Data Science in Finance and Economics, 2(3), 163-180. |