參考文獻 |
1. Ai, C. (2022). A Method for Cancer Genomics Feature Selection Based on LASSO-RFE [Article]. Iranian Journal of Science and Technology Transaction a-Science, 46(3), 731-738. https://doi.org/10.1007/s40995- 022-01292-8
2. Airbus. (2002). Getting to Grips with Aircraft Performance Monitoring.
3. Boeing. (2018). Airplane Performance Monitoring Software User Manual.
4. Breiman, L. (2001). Random forests [Article]. Machine Learning, 45(1), 5-32.
https://doi.org/10.1023/a:1010933404324
5. Buckley, T., Ghosh, B., & Pakrashi, V. (2023). A Feature Extraction & Selection Benchmark for Structural Health Monitoring [Article; Early Access]. Structural Health Monitoring-an International Journal, 22(3), 2082-2127. https://doi.org/10.1177/14759217221111141
6. Cao, B., Li, C. H., Song, Y. F., Qin, Y. Y., & Chen, C. (2022). Network Intrusion Detection Model Based
on CNN and GRU [Article]. Applied Sciences-Basel, 12(9), 27, Article 4184. https://doi.org/10.3390/app12094184
7. Chen, C., Lu, N. Y., Jiang, B., & Wang, C. S. (2021). A Risk-Averse Remaining Useful Life Estimation for Predictive Maintenance [Article]. Ieee-Caa Journal of Automatica Sinica, 8(2), 412-422. https://doi.org/10.1109/jas.2021.1003835
8. Chen, X., Jin, G., Qiu, S., Lu, M., & Yu, D. (2020, 16-18 Oct. 2020). Direct Remaining Useful Life Estimation Based on Random Forest Regression. 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai),
9. Chen, Y., Ma, L., Yu, D., Zhang, H., Feng, K., Wang, X., & Song, J. (2022). Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests. Ecological Indicators, 135, 108545. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.108545
10. De Giorgi, M. G., Menga, N., & Ficarella, A. (2023). Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies. Energies, 16(6), 2711. https://www.mdpi.com/1996-1073/16/6/2711
11. Faisal, H. M., Javaid, N., Sarfraz, B., Baqi, A., Bilal, M., Haider, I., & Shuja, S. M. (2019). Prediction of Building Energy Consumption Using Enhance Convolutional Neural Network. AINA Workshops,
12. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 46, 389-422. https://doi.org/10.1023/A:1012487302797
13. Hamada, M., Tanimu, J. J., Hassan, M., Kakudi, H. A., & Robert, P. (2021, 20-23 Dec. 2021). Evaluation of Recursive Feature Elimination and LASSO Regularization-based optimized feature selection approaches for cervical cancer prediction. 2021 IEEE 14th International Symposium on Embedded Multicore/Many- core Systems-on-Chip (MCSoC),
66
14. Hu, Y., Miao, X., Si, Y., Pan, E., & Zio, E. (2022). Prognostics and health management: A review from the perspectives of design, development and decision. Reliability Engineering & System Safety, 217, 108063. https://doi.org/https://doi.org/10.1016/j.ress.2021.108063
15. Jović, A., Brkić, K., & Bogunović, N. (2015, 25-29 May 2015). A review of feature selection methods with applications. 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
16. Kang, Z. Q., Catal, C., & Tekinerdogan, B. (2021). Remaining Useful Life (RUL) Prediction of Equipment in Production Lines Using Artificial Neural Networks [Article]. Sensors, 21(3), 20, Article 932. https://doi.org/10.3390/s21030932
17. Kannangara, K., Zhou, W. H., Ding, Z., & Hong, Z. H. (2022). Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method [Article]. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1052-1063. https://doi.org/10.1016/j.jrmge.2022.01.002
18. Khumprom, P., Yodo, N., & Grewell, D. (2020, 27-30 Jan. 2020). Neural Networks Based Feature Selection Approaches for Prognostics of Aircraft Engines. 2020 Annual Reliability and Maintainability Symposium (RAMS),
19. Krajček Nikolić, K., Nikolić, D., & Domitrovic, A. (2015). Aircraft performance monitoring from flight data. Tehnicki Vjesnik, 22. https://doi.org/10.17559/TV-20131220145918
20. Li, G. (2020). A Pearson Based Feature Compressing Model for SNARE Protein Classification. IEEE Access, 8, 136560-136569. https://doi.org/10.1109/ACCESS.2020.3010944
21. Li, J. D., Cheng, K. W., Wang, S. H., Morstatter, F., Trevino, R. P., Tang, J. L., & Liu, H. (2018). Feature Selection: A Data Perspective [Article]. Acm Computing Surveys, 50(6), 45, Article 94. https://doi.org/10.1145/3136625
22. Liu, Y., Shi, H., Huang, S., Chen, X., Zhou, H., Chang, H., Xia, Y., Wang, G., & Yang, X. (2019). Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images. Quantitative Imaging in Medicine and Surgery, 9(7), 1288-1302. https://qims.amegroups.org/article/view/27545
23. Lu, S. S., Koopialipoor, M., Asteris, P. G., Bahri, M., & Armaghani, D. J. (2020). A Novel Feature Selection Approach Based on Tree Models for Evaluating the Punching Shear Capacity of Steel Fiber-Reinforced Concrete Flat Slabs [Article]. Materials, 13(17), 20, Article 3902. https://doi.org/10.3390/ma13173902
24. Luo, M., Wang, Y. F., Xie, Y. H., Zhou, L., Qiao, J. J., Qiu, S. Y., & Sun, Y. J. (2021). Combination of Feature Selection and CatBoost for Prediction: The First Application to the Estimation of Aboveground Biomass [Article]. Forests, 12(2), 21, Article 216. https://doi.org/10.3390/f12020216
25. Michael, G. P., & Myeongsu, K. (2019). The Role of PHM at Commercial Airlines. In Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things (pp. 503- 534). IEEE. https://doi.org/10.1002/9781119515326.ch18
26. Ordóñez, C., Lasheras, F. S., Roca-Pardiñas, J., & Juez, F. J. D. (2019). A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines [Article]. Journal of Computational and Applied Mathematics, 346, 184-191. https://doi.org/10.1016/j.cam.2018.07.008
67
27. Rahbari, A., Rébillat, M., Mechbal, N., & Canu, S. (2021). Unsupervised damage clustering in complex aeronautical composite structures monitored by Lamb waves: An inductive approach [Article]. Engineering Applications of Artificial Intelligence, 97, 17, Article 104099. https://doi.org/10.1016/j.engappai.2020.104099
28. Rajković, D., Marjanović Jeromela, A., Pezo, L., Lončar, B., Zanetti, F., Monti, A., & Kondić Špika, A. (2022). Yield and Quality Prediction of Winter Rapeseed—Artificial Neural Network and Random Forest Models. Agronomy, 12(1).
29. Ransom, C. J., Kitchen, N. R., Camberato, J. J., Carter, P. R., Ferguson, R. B., Fernández, F. G., Franzen, D. W., Laboski, C. A. M., Myers, D. B., Nafziger, E. D., Sawyer, J. E., & Shanahan, J. F. (2019). Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Computers and Electronics in Agriculture, 164, 104872. https://doi.org/https://doi.org/10.1016/j.compag.2019.104872
30. Ren, L. K., Qin, H. Q., Xie, Z. B., Li, B. J., & Xu, K. J. (2022). Aero-Engine Remaining Useful Life Estimation Based on Multi-Head Networks [Article]. Ieee Transactions on Instrumentation and Measurement, 71, 10, Article 3505810. https://doi.org/10.1109/tim.2022.3149094
31. Rose, S., Nickolas, S., & Sangeetha, S. (2021). A recursive ensemble-based feature selection for multi- output models to discover patterns among the soil nutrients. Chemometrics and Intelligent Laboratory Systems, 208, 104221. https://doi.org/https://doi.org/10.1016/j.chemolab.2020.104221
32. Shahhosseini, M., Martinez-Feria, R., Hu, G., & Archontoulis, S. (2019). Maize yield and nitrate loss prediction with machine learning algorithms. Environmental Research Letters, 14. https://doi.org/10.1088/1748-9326/ab5268
33. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso [Article]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 58(1), 267-288. https://doi.org/10.1111/j.2517- 6161.1996.tb02080.x
34. Tsai, C.-F., & Sung, Y.-T. (2020). Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches. Knowledge-Based Systems, 203, 106097. https://doi.org/https://doi.org/10.1016/j.knosys.2020.106097
35. Viale, L., Daga, A. P., Fasana, A., & Garibaldi, L. (2023). Least squares smoothed k-nearest neighbors online prediction of the remaining useful life of a NASA turbofan. Mechanical Systems and Signal Processing, 190, 110154. https://doi.org/https://doi.org/10.1016/j.ymssp.2023.110154
36. Vollert, S., & Theissler, A. (2021, 7-10 Sept. 2021). Challenges of machine learning-based RUL prognosis: A review on NASA′s C-MAPSS data set. 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA ),
37. Wang, C., Lu, N., Cheng, Y., & Jiang, B. (2021). A Data-Driven Aero-Engine Degradation Prognostic Strategy. IEEE Transactions on Cybernetics, 51(3), 1531-1541. https://doi.org/10.1109/TCYB.2019.2938244
68
38. Wang, H., Li, D., Li, D., Liu, C., Yang, X., & Zhu, G. (2023). Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-Layer Perceptron. Applied Sciences, 13(12).
39. Yuan, Z., Liu, J., Liu, Y., Yuan, Y., Zhang, Q., & Li, Z. (2020). Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors. IEEE Access, 8, 187441-187454. https://doi.org/10.1109/ACCESS.2020.3030614
40. Zhou, X., Lu, F., & Huang, J. Q. (2019). Fault diagnosis based on measurement reconstruction of HPT exit pressure for turbofan engine [Article]. Chinese Journal of Aeronautics, 32(5), 1156-1170. https://doi.org/10.1016/j.cja.2019.03.032
41. Zio, E. (2022). Prognostics and Health Management (PHM): Where are we and where do we (need to) go
in theory and practice. Reliability Engineering & System Safety, 218, 108119. https://doi.org/https://doi.org/10.1016/j.ress.2021.108119 |