博碩士論文 111423005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:89 、訪客IP:3.15.239.145
姓名 李孟儒(Meng-Ju Lee)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 強化學習研究垂直差異化之訂價策略:以ChatGPT為例
(A Study of Pricing Strategies in Vertical Differentiation Using Reinforcement Learning: A Case Study of ChatGPT)
相關論文
★ 直播平台之廣告競爭策略與利益分享制度分析★ 以雙邊平台模型分析雲端遊戲主機經營策略
★ 利用納許Q學習來探討汽車租賃公司與運輸網路公司之定價策略★ 以賽局理論分析入口網站應對內容農場之策略
★ 以賽局理論分析傳統車輛租賃業與運輸共 享平台之合作商業模式★ 基於多重代理人機制之現金回饋平台定價策略分析
★ 分析應用程式平台之隱私保護設定:硬體營收與廣告分潤★ 企業在產品差異化市場下之區塊鏈導入決策
★ 利用納許Q學習分析傳統廣告贊助與下一代付費服務之競爭:以Google與BingChat為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-6-30以後開放)
摘要(中) 隨著AI聊天機器人的快速發展,特別是ChatGPT,其在企業應用中的安全性成為了一個重要議題。本研究旨在探討如何利用強化學習技術,來制定ChatGPT產品的最佳訂價策略,以實現企業利潤最大化。研究主要分析了網路效應係數、資訊洩漏風險係數以及服務成本對ChatGPT Enterprise(企業版)和ChatGPT+(進階版)兩種產品的需求和利潤的影響。ChatGPT Enterprise版本因不使用輸入資訊進行模型訓練,因此在資訊安全上有優勢。本研究的結果為ChatGPT公司在制定產品訂價策略上提供了決策依據。
首先,我們建立了使用者對兩種產品的效用函數模型,考慮了產品價值、價格、資訊洩漏風險和網路效應等因素。這些模型幫助我們理解消費者在不同條件下的選擇行為。我們分別討論了選擇企業版和進階版的消費者比例。
接下來,我們設計了一系列實驗,利用Q-learning演算法模擬不同參數條件下的最佳訂價策略。綜合實驗結果,我們提出了以下結論:在高網路效應環境下,應集中推廣進階版服務,以增加進階版需求;在高資訊洩漏風險情境下,應強化企業版的安全性優勢,出乎意料的是此時應適度調降其訂價,來增加企業版的使用需求;服務成本因素對於企業利潤極為敏感,因此應做好適度的成本控管。
摘要(英) With the rapid development of AI chatbots, particularly ChatGPT, security in enterprise applications has become a significant issue. This study aims to explore how to use reinforcement learning techniques to formulate the optimal pricing strategy for ChatGPT products to maximize corporate profits. The research primarily analyzes the impact of the network effect coefficient, information leakage risk coefficient, and service cost on the demand and profits of ChatGPT Enterprise and ChatGPT+. The ChatGPT Enterprise version, which does not use input information for model training, has an advantage in information security. The results of this study provide a decision-making basis for ChatGPT company in formulating product pricing strategies.
First, we established utility function models for users of the two products, considering factors such as product value, price, information leakage risk, and network effects. These models help us understand consumer choices under different conditions. We discussed the proportion of consumers choosing the enterprise version and the advanced version separately.
Next, we designed a series of experiments, utilizing the Q-learning algorithm to simulate the optimal pricing strategy under different parameter conditions. Based on the comprehensive experimental results, we propose the following conclusions: in a high network effect environment, the focus should be on promoting the advanced version to increase its demand; in a high information leakage risk scenario, the security advantages of the Enterprise version should be enhanced, and surprisingly, its pricing should be moderately reduced to increase usage demand; the factor of service costs is extremely sensitive to corporate profits, so appropriate cost control measures should be implemented.
關鍵字(中) ★ 資訊安全
★ 訂價策略
★ 垂直差異化
★ 強化學習
關鍵字(英)
論文目次 摘要 ii
Abstract iii
致謝 iv
目錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1 資安問題 3
2.2 垂直差異化 3
2.3 強化學習 4
第三章 研究方法 7
3.1 問題描述 7
3.2 模型設置 7
3.3 使用人數分析 9
第四章 實驗 15
4.1 實驗說明 15
4.2 實驗結果 17
4.3 小結 25
第五章 結論 27
參考文獻 29
參考文獻 [1] M. Abdullah, A. Madain, and Y. Jararweh, “ChatGPT: Fundamentals, Applications and Social Impacts,” in 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), Jan. 2022, pp. 1–8. doi: 10.1109/SNAMS58071.2022.10062688.
[2] T. Wu et al., “A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1122–1136, May 2023, doi: 10.1109/JAS.2023.123618.
[3] Y. Wang, Y. Pan, M. Yan, Z. Su, and T. H. Luan, “A Survey on ChatGPT: AI–Generated Contents, Challenges, and Solutions,” IEEE Open Journal of the Computer Society, vol. 4, pp. 280–302, 2023, doi: 10.1109/OJCS.2023.3300321.
[4] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and Privacy,” IEEE Access, vol. 11, pp. 80218–80245, 2023, doi: 10.1109/ACCESS.2023.3300381.
[5] X. Wu, R. Duan, and J. Ni, “Unveiling security, privacy, and ethical concerns of ChatGPT,” Journal of Information and Intelligence, Oct. 2023, doi: 10.1016/j.jiixd.2023.10.007.
[6] I. M. Abbadi and M. Alawneh, “Preventing Insider Information Leakage for Enterprises,” in 2008 Second International Conference on Emerging Security Information, Systems and Technologies, Aug. 2008, pp. 99–106. doi: 10.1109/SECURWARE.2008.14.
[7] J. Du, “Research on Enterprise Information Security and Privacy Protection in Big Data Environment,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Feb. 2021, pp. 324–327. doi: 10.1109/MLBDBI54094.2021.00067.
[8] YI, Youjae, “A critical review of consumer satisfaction,” 1990.
[9] Y. Pan and G. M. Zinkhan, “Exploring the impact of online privacy disclosures on consumer trust,” Journal of Retailing, vol. 82, no. 4, pp. 331–338, Jan. 2006, doi: 10.1016/j.jretai.2006.08.006.
[10] K. S. Moorthy, “Product and Price Competition in a Duopoly,” Marketing Science, vol. 7, no. 2, pp. 141–168, 1988.
[11] J. P. Johnson and D. P. Myatt, “Multiproduct Quality Competition:Fighting Brands and Product Line Pruning,” American Economic Review, vol. 93, no. 3, pp. 748–774, May 2003, doi: 10.1257/000282803322157070.
[12] D. Bergemann and J. Välimäki, “Dynamic Pricing of New Experience Goods,” Journal of Political Economy, vol. 114, no. 4, pp. 713–743, 2006, doi: 10.1086/506923.
[13] S. Viswanathan and G. Anandalingam, “Pricing strategies for information goods,” Sadhana, vol. 30, no. 2, pp. 257–274, Apr. 2005, doi: 10.1007/BF02706247.
[14] H. R. Varian, “Market Structure in the Network Age,” in Understanding the Digital Economy, E. Brynjolfsson and B. Kahin, Eds., The MIT Press, 2000, pp. 137–150. doi: 10.7551/mitpress/6986.003.0008.
[15] M. Bertini and L. Wathieu, “Research Note—Attention Arousal Through Price Partitioning,” Marketing Science, vol. 27, no. 2, pp. 236–246, Mar. 2008, doi: 10.1287/mksc.1070.0295.
[16] A. Lahiri and D. Dey, “Effects of Piracy on Quality of Information Goods,” Management Science, vol. 59, no. 1, pp. 245–264, 2013.
[17] Y. Yu, Y. Dong, and X. Guo, “Pricing for sales and per-use rental services with vertical differentiation,” European Journal of Operational Research, vol. 270, no. 2, pp. 586–598, Oct. 2018, doi: 10.1016/j.ejor.2018.03.035.
[18] M. B. Vandenbosch and C. B. Weinberg, “Product and Price Competition in a Two-Dimensional Vertical Differentiation Model,” Marketing Science, vol. 14, no. 2, pp. 224–249, 1995.
[19] I. Stamatopoulos and C. Tzamos, “Design and Dynamic Pricing of Vertically Differentiated Inventories,” Management Science, vol. 65, no. 9, pp. 4222–4241, Sep. 2019, doi: 10.1287/mnsc.2018.3136.
[20] C. J. C. H. WATKINS, “Learning from delayed rewards,” 1989.
[21] G. Tesauro and J. O. Kephart, “Pricing in Agent Economies Using Multi-Agent Q-Learning,” Autonomous Agents and Multi-Agent Systems, vol. 5, no. 3, pp. 289–304, Sep. 2002, doi: 10.1023/A:1015504423309.
[22] E. Kutschinski, T. Uthmann, and D. Polani, “Learning competitive pricing strategies by multi-agent reinforcement learning,” Journal of Economic Dynamics and Control, vol. 27, no. 11, pp. 2207–2218, Sep. 2003, doi: 10.1016/S0165-1889(02)00122-7.
[23] R. Maestre, J. Duque, A. Rubio, and J. Arevalo, “Reinforcement Learning for Fair Dynamic Pricing,” in Intelligent Systems and Applications, K. Arai, S. Kapoor, and R. Bhatia, Eds., Cham: Springer International Publishing, 2019, pp. 120–135. doi: 10.1007/978-3-030-01054-6_8.
[24] S. Chen, L. Li, Z. Chen, and S. Li, “Dynamic Pricing for Smart Mobile Edge Computing: A Reinforcement Learning Approach,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 700–704, Apr. 2021, doi: 10.1109/LWC.2020.3039863.
[25] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.
[26] A. Kastius and R. Schlosser, “Dynamic pricing under competition using reinforcement learning,” J Revenue Pricing Manag, vol. 21, no. 1, pp. 50–63, Feb. 2022, doi: 10.1057/s41272-021-00285-3.
[27] G. Tesauro, “Pricing in Agent Economies Using Neural Networks and Multi-agent Q-Learning,” in Sequence Learning: Paradigms, Algorithms, and Applications, R. Sun and C. L. Giles, Eds., Berlin, Heidelberg: Springer, 2001, pp. 288–307. doi: 10.1007/3-540-44565-X_13.
[28] Z. Zhao and C. K. M. Lee, “Dynamic Pricing for EV Charging Stations: A Deep Reinforcement Learning Approach,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2456–2468, Jun. 2022, doi: 10.1109/TTE.2021.3139674.
指導教授 張李治華(Jhih-Hua Jhang Li) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明