參考文獻 |
[1] M. Abdullah, A. Madain, and Y. Jararweh, “ChatGPT: Fundamentals, Applications and Social Impacts,” in 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS), Jan. 2022, pp. 1–8. doi: 10.1109/SNAMS58071.2022.10062688.
[2] T. Wu et al., “A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp. 1122–1136, May 2023, doi: 10.1109/JAS.2023.123618.
[3] Y. Wang, Y. Pan, M. Yan, Z. Su, and T. H. Luan, “A Survey on ChatGPT: AI–Generated Contents, Challenges, and Solutions,” IEEE Open Journal of the Computer Society, vol. 4, pp. 280–302, 2023, doi: 10.1109/OJCS.2023.3300321.
[4] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From ChatGPT to ThreatGPT: Impact of Generative AI in Cybersecurity and Privacy,” IEEE Access, vol. 11, pp. 80218–80245, 2023, doi: 10.1109/ACCESS.2023.3300381.
[5] X. Wu, R. Duan, and J. Ni, “Unveiling security, privacy, and ethical concerns of ChatGPT,” Journal of Information and Intelligence, Oct. 2023, doi: 10.1016/j.jiixd.2023.10.007.
[6] I. M. Abbadi and M. Alawneh, “Preventing Insider Information Leakage for Enterprises,” in 2008 Second International Conference on Emerging Security Information, Systems and Technologies, Aug. 2008, pp. 99–106. doi: 10.1109/SECURWARE.2008.14.
[7] J. Du, “Research on Enterprise Information Security and Privacy Protection in Big Data Environment,” in 2021 3rd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Feb. 2021, pp. 324–327. doi: 10.1109/MLBDBI54094.2021.00067.
[8] YI, Youjae, “A critical review of consumer satisfaction,” 1990.
[9] Y. Pan and G. M. Zinkhan, “Exploring the impact of online privacy disclosures on consumer trust,” Journal of Retailing, vol. 82, no. 4, pp. 331–338, Jan. 2006, doi: 10.1016/j.jretai.2006.08.006.
[10] K. S. Moorthy, “Product and Price Competition in a Duopoly,” Marketing Science, vol. 7, no. 2, pp. 141–168, 1988.
[11] J. P. Johnson and D. P. Myatt, “Multiproduct Quality Competition:Fighting Brands and Product Line Pruning,” American Economic Review, vol. 93, no. 3, pp. 748–774, May 2003, doi: 10.1257/000282803322157070.
[12] D. Bergemann and J. Välimäki, “Dynamic Pricing of New Experience Goods,” Journal of Political Economy, vol. 114, no. 4, pp. 713–743, 2006, doi: 10.1086/506923.
[13] S. Viswanathan and G. Anandalingam, “Pricing strategies for information goods,” Sadhana, vol. 30, no. 2, pp. 257–274, Apr. 2005, doi: 10.1007/BF02706247.
[14] H. R. Varian, “Market Structure in the Network Age,” in Understanding the Digital Economy, E. Brynjolfsson and B. Kahin, Eds., The MIT Press, 2000, pp. 137–150. doi: 10.7551/mitpress/6986.003.0008.
[15] M. Bertini and L. Wathieu, “Research Note—Attention Arousal Through Price Partitioning,” Marketing Science, vol. 27, no. 2, pp. 236–246, Mar. 2008, doi: 10.1287/mksc.1070.0295.
[16] A. Lahiri and D. Dey, “Effects of Piracy on Quality of Information Goods,” Management Science, vol. 59, no. 1, pp. 245–264, 2013.
[17] Y. Yu, Y. Dong, and X. Guo, “Pricing for sales and per-use rental services with vertical differentiation,” European Journal of Operational Research, vol. 270, no. 2, pp. 586–598, Oct. 2018, doi: 10.1016/j.ejor.2018.03.035.
[18] M. B. Vandenbosch and C. B. Weinberg, “Product and Price Competition in a Two-Dimensional Vertical Differentiation Model,” Marketing Science, vol. 14, no. 2, pp. 224–249, 1995.
[19] I. Stamatopoulos and C. Tzamos, “Design and Dynamic Pricing of Vertically Differentiated Inventories,” Management Science, vol. 65, no. 9, pp. 4222–4241, Sep. 2019, doi: 10.1287/mnsc.2018.3136.
[20] C. J. C. H. WATKINS, “Learning from delayed rewards,” 1989.
[21] G. Tesauro and J. O. Kephart, “Pricing in Agent Economies Using Multi-Agent Q-Learning,” Autonomous Agents and Multi-Agent Systems, vol. 5, no. 3, pp. 289–304, Sep. 2002, doi: 10.1023/A:1015504423309.
[22] E. Kutschinski, T. Uthmann, and D. Polani, “Learning competitive pricing strategies by multi-agent reinforcement learning,” Journal of Economic Dynamics and Control, vol. 27, no. 11, pp. 2207–2218, Sep. 2003, doi: 10.1016/S0165-1889(02)00122-7.
[23] R. Maestre, J. Duque, A. Rubio, and J. Arevalo, “Reinforcement Learning for Fair Dynamic Pricing,” in Intelligent Systems and Applications, K. Arai, S. Kapoor, and R. Bhatia, Eds., Cham: Springer International Publishing, 2019, pp. 120–135. doi: 10.1007/978-3-030-01054-6_8.
[24] S. Chen, L. Li, Z. Chen, and S. Li, “Dynamic Pricing for Smart Mobile Edge Computing: A Reinforcement Learning Approach,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 700–704, Apr. 2021, doi: 10.1109/LWC.2020.3039863.
[25] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.
[26] A. Kastius and R. Schlosser, “Dynamic pricing under competition using reinforcement learning,” J Revenue Pricing Manag, vol. 21, no. 1, pp. 50–63, Feb. 2022, doi: 10.1057/s41272-021-00285-3.
[27] G. Tesauro, “Pricing in Agent Economies Using Neural Networks and Multi-agent Q-Learning,” in Sequence Learning: Paradigms, Algorithms, and Applications, R. Sun and C. L. Giles, Eds., Berlin, Heidelberg: Springer, 2001, pp. 288–307. doi: 10.1007/3-540-44565-X_13.
[28] Z. Zhao and C. K. M. Lee, “Dynamic Pricing for EV Charging Stations: A Deep Reinforcement Learning Approach,” IEEE Transactions on Transportation Electrification, vol. 8, no. 2, pp. 2456–2468, Jun. 2022, doi: 10.1109/TTE.2021.3139674. |