博碩士論文 111453035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.223.106.205
姓名 陳品宏(Pin-Hung Chen)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 質心式優化之自監督式對比學習於玉米葉部病害影像分類之研究
(The Study on Centroid-Based Enhancement of Self-Supervised Contrastive Learning for Corn Leaf Disease Image Classification)
相關論文
★ 台灣50走勢分析:以多重長短期記憶模型架構為基礎之預測★ 以多重遞迴歸神經網路模型為基礎之黃金價格預測分析
★ 增量學習用於工業4.0瑕疵檢測★ 遞回歸神經網路於電腦零組件銷售價格預測之研究
★ 長短期記憶神經網路於釣魚網站預測之研究★ 基於深度學習辨識跳頻信號之研究
★ Opinion Leader Discovery in Dynamic Social Networks★ 深度學習模型於工業4.0之機台虛擬量測應用
★ A Novel NMF-Based Movie Recommendation with Time Decay★ 以類別為基礎sequence-to-sequence模型之POI旅遊行程推薦
★ A DQN-Based Reinforcement Learning Model for Neural Network Architecture Search★ Neural Network Architecture Optimization Based on Virtual Reward Reinforcement Learning
★ 生成式對抗網路架構搜尋★ 以漸進式基因演算法實現神經網路架構搜尋最佳化
★ Enhanced Model Agnostic Meta Learning with Meta Gradient Memory★ 遞迴類神經網路結合先期工業廢水指標之股價預測研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-1以後開放)
摘要(中) 本研究開發一種創新的 CMC(CNN-Momentum Contrast-Centroid Loss)模型,結合卷積神經網路(CNN)、自監督對比學習和質心式優化(Centroid-Based Enhancement)的技術,用於玉米葉病的識別。首先,對玉米葉部的影像資料進行 RGB 強化特徵處理,以提供更豐富的視覺信息,提高模型的識別和分類能力。接著,採用 ResNet18 進行預訓練,通過對比學習學習到通用的視覺特徵表示。基於 MoCo 的動量對比學習機制,維護和更新鍵編碼器,保持查詢編碼器的特徵一致性,並結合 InfoNCE 損失函數和 Centroid Loss,形成權衡的總損失函數,進一步提升特徵空間中的類內緊密度和類間區隔性。
實驗結果顯示,CMC 模型在處理複雜和多變的農業影像資料方面具有優勢。相比於傳統的卷積神經網路和其他自監督學習模型,CMC 模型能夠更有效地識別不同類型的玉米葉病。質心式優化(Centroid-Based Enhancement)在本研究中發揮重要作用。通過引入質心式優化,CMC 模型能夠更好地學習每個類別的質心,使同類樣本在特徵空間中彼此靠近,而不同類別的樣本保持距離,從而增強類內聚合度並擴大類間差異。
為了提升 CMC 模型的性能,未來的研究將擴展資料集和病害範圍,包括增加不同生長階段和環境條件下拍攝的影像資料,並探索其他作物病害的識別。此外,跨學科合作在智慧農業中的應用,如結合空拍機、農業機器人和移動應用(APP),將提高農業監控和病害診斷的效率和精確度,推動智慧農業的發展。這些改進將提升模型的實用性和準確性,為農業監控和病害診斷提供先進的技術支持。
摘要(英) This study developed an innovative CMC (CNN-Momentum Contrast-Centroid Loss) model, combining the techniques of Convolutional Neural Networks (CNN), self-supervised contrastive learning, and Centroid Loss, aimed at the identification of corn leaf diseases. Initially, RGB-enhanced feature processing was applied to the image data of corn leaves to provide richer visual information and improve the model′s recognition and classification capabilities. Subsequently, ResNet18 was used for pre-training, learning universal visual feature representations through contrastive learning. Based on MoCo′s momentum contrast learning mechanism, the key encoder is maintained and updated to keep the feature consistency of the query encoder. The combination of InfoNCE loss function and Centroid Loss forms a balanced total loss function, further enhancing intra-class compactness and inter-class separability in the feature space.
Experimental results show that the CMC model has significant advantages in handling complex and variable agricultural image data. Compared to traditional convolutional neural networks and other self-supervised learning models, the CMC model more effectively identifies different types of corn leaf diseases. Centroid-Based Enhancement played an important role in this study. By introducing Centroid Loss, the CMC model can better learn the centroid of each category, bringing similar samples closer in the feature space while keeping different categories separated, thereby enhancing intra-class aggregation and inter-class differentiation.
To further enhance the performance of the CMC model, future research will expand the dataset and the range of diseases, including images taken at different growth stages and under various environmental conditions, and explore the identification of other crop diseases. Additionally, interdisciplinary collaboration in smart agriculture, such as integrating drones, agricultural robots, and mobile applications (APPs), will significantly improve the efficiency and accuracy of agricultural monitoring and disease diagnosis, promoting the development of smart agriculture. These improvements will greatly enhance the model′s practicality and accuracy, providing advanced technical support for agricultural monitoring and disease diagnosis.
關鍵字(中) ★ 玉米葉病
★ 卷積神經網路
★ 自監督式學習
★ 對比學習
★ 質心式優化
關鍵字(英) ★ corn leaf disease
★ convolutional neural network
★ self-supervised learning
★ contrastive learning
★ Centroid Loss
論文目次 中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表 目 v
圖 目 vi
一、 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 研究目的 3
1-4 研究貢獻 4
1-5 研究架構 5
二、 文獻回顧 6
2-1 影像辨識應用於農業領域相關研究 7
2-2 卷積神經網路 8
2-3 自監督式學習 11
三、 研究方法 14
3-1 研究設計架構 14
3-2 圖片前處理 14
3-3 模型架構與函數定義 16
3-3-1 預訓練模型 17
3-3-2 動量對比學習 19
3-3-3 對比損失函數 20
3-3-4 質心式優化損失函數 21
四、 實驗與結果分析 24
4-1 資料集與前置處理 24
4-2 比較模型 25
4-3 準確率效能討論 27
4-4 精確率、召回率指標討論 30
4-5 敏感性分析與參數設定 35
4-6 質心損失對CMC的影響 37
4-7 實例驗證與討論 39
4-8 實驗總結 42
五、結論與未來研究方向 44
5-1 結論 44
5-2 研究貢獻與未來研究方向 45
參考文獻 47
參考文獻 ﹝1﹞ 朱育聖,「運用類神經網路進行植物病害影像檢測—以蘭花為例」,朝陽科技大學資訊管理系研究所碩士論文,2020。
﹝2﹞ 葉少昊,「利用深度學習提升蔬菜蟲害辨識之研究」,逢甲大學資訊電機工程碩士在職專班研究所碩士論文,2022。
﹝3﹞ 李湘渝,「基於卷積神經網路之深度學習方法之蘋果葉面病害辨識與分類」,國立屏東科技大學資訊管理系所研究所碩士論文,2022。
﹝4﹞ 楊維竹,「應用深度學習技術於茶葉病害影像分類問題」,南華大學資訊管理學系研究所碩士論文,2024。
﹝5﹞ 蕭嘉榮,「人工智慧影像辨識技術應用於草莓病害檢測」,國立聯合大學機械工程學系研究所碩士論文,2020。
﹝6﹞ 王靖惠,「使用深度學習於檢測番茄病害」,國立中正大學資訊管理學系碩士在職專班研究所碩士論文,2020。
﹝7﹞ R.A. Guler, N. Neverova, and I. Kokkinos, “ DensePose: Dense human pose estimation in the wild”, CVPR, 2018.
﹝8﹞ 樊湘鵬,「基於改進區域卷積神經網路的田間玉米葉部病害識別」,華南農業大學學報,41(6),82-91頁,2020。
﹝9﹞ 黃如郁,「應用對比學習與全域池化於多標籤圖像分類及視覺化方法之研究」,國立臺灣科技大學資訊管理系研究所碩士論文,2024。
﹝10﹞ 黃家興,「影像擴增在自監督比對學習的影像分類之研究」,國立清華大學智慧製造跨院高階主管碩士在職學位碩士論文,2022。
﹝11﹞ S. Mohanty, D. Hughes, & M. Salathé, “Using deep learning for image-based plant disease detection”, Frontiers in plant science, Vol. 7, pp. 1419, 2016.
﹝12﹞ S. Brahman, M. Khan, &H. Rhaman, “A multi-staged framework with convolutional neural network for cotton leaf disease recognition”, Multimedia Tools and Applications, Vol. 77, no. 12, pp. 15287-15308, 2017.
﹝13﹞ G. Polder, P. Sanchez, & M. Klein, “Plant phenomics and virus population studies: Connecting the visual with the molecular”, Annual Review of Phytopathology, Vol. 57, pp. 287-310, 2019.
﹝14﹞ W. Jinguo, “Identification of wheat leaf diseases based on deep convolutional neural networks”, Sensors, Vol. 21, no. 6, pp. 1-17, 2021.
﹝15﹞ R. Hadsell, S. Chopra, Y. LeCun, “Dimension-ality reduction by learning an invariant mapping”, In CVPR,2006.
﹝16﹞ N. Dap, M. Ali, H. Thi, “Using Deep Learning for Plant Disease Detection”, Journal of Nanotechnology in Engineering and Medicine, Vol. 10, no. 4, 2020.
﹝17﹞ Sumin, “Transfer learning for fruit disease identification by ensembling high performing deep convolutional neural networks”, Information Processing in Agriculture, Vol. 9, pp. 164-175, 2022.
﹝18﹞ Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, 86(11), pp. 2278-2324, 1998.
﹝19﹞ A. Krizhevsky, I. Sutskever, & G. Hinton, “ Imagenet classification with deep convolutional neural networks”, In Advances in neural information processing systems, pp. 1097-1105, 2012.
﹝20﹞ K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.
﹝21﹞ C. Szegedy, W. Liu, Jia “Going deeper with convolutions”, In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 1-9, 2015.
﹝22﹞ K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
﹝23﹞ G. Huang, Z. Liu, V. D. M., “Densely connected convolutional networks”, In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 4700-4708, 2017.
﹝24﹞ M. Abdel-Hamid, A. R., H. Jiang, “Convolutional neural networks for speech recognition”, IEEE/ACM Transactions on audio, speech, and language processing, 22(10), 1533-1545, 2014.
﹝25﹞ Y. Kim “ Convolutional neural networks for sentence classification”, arXiv preprint arXiv:1408.5882, 2014.
﹝26﹞ B. Zoph, Q. V. Le, "Neural architecture search with reinforcement learning", arXiv preprint arXiv:1611.01578, 2016.
﹝27﹞ B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, "Learning transferable architectures for scalable image recognition", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697-8710, 2018.
﹝28﹞ H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, "Efficient neural architecture search via parameters sharing", International Conference on Machine Learning, pp. 4095-4104, 2018.
﹝29﹞ C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li, L. Fei-Fei, A. Yuille, J. Huang, K. Murphy, "Progressive neural architecture search", Proceedings of the European conference on computer vision (ECCV), pp. 19-34, 2018.
﹝30﹞ M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le, "Mnasnet: Platform-aware neural architecture search for mobile", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.
﹝31﹞ Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, “What Makes for Good Views for Contrastive Learning?” In Advances in Neural Information Processing Systems, Volume 33, pp. 6827–6839, 2020.
﹝32﹞ T. Chen, S. Kornblith, M. Norouzi, G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations”, In Proceedings of the 37th International Conference on Machine Learning, PMLR, Vienna, Austria, pp. 1597–1607, 2020.
﹝33﹞ T. Chen, S. Kornblith, K. Swersky, M. Norouzi, G.E. Hinton “Self-Supervised Models Are Strong Semi-Supervised Learners”, In Advances in Neural Information Processing Systems, Curran Associates, Inc.: New York, NY, USA, Volume 33, pp. 22243–22255, 2020.
﹝34﹞ M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”, In Advances in Neural Information Processing System, Volume 33, pp. 9912–9924, 2020.
﹝35﹞ J. Grill, F. Strub, F. Altché, C. Tallec, P.H. Richemond, E. Buchatskaya, C. Doersch, B.A. Pires, Z.D. Guo, M.G. Azar, “A New Approach to Self-Supervised Learning”, Adv. Neural Inf. Processing Syst, 2020.
﹝36﹞ M. Wei, Y. Liu, T. Zhang, Z. Wang, J. Zhu, “Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples”, 2021.
﹝37﹞ Y. Ding, J. Zhuang, P. Ding, M. Jia, “Self-Supervised Pretraining via Contrast Learning for Intelligent Incipient Fault Detection of Bearings”, Reliab. Eng. Syst. Saf., 218, 108126, 2022.
﹝38﹞ P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu and D. Krishnan, “Supervised Contrastive Learning”, In Proc. of NeurIPS, 2020.
﹝39﹞ K. He, H. Fan, Y. Wu, S. Xie, “Momentum Contrast for Unsupervised Visual Representation Learning”, Facebook AI Research (FAIR), 2020.
﹝40﹞ Y. Zhu, J. Tang, M. Wang, M. “Cross-modal contrastive learning for text-to-image generation”, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , pp. 833-842, 2021.
﹝41﹞ D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, N. Batra, “PlantDoc: a dataset for visual plant disease detection”, InProceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249-253, 2020.
﹝42﹞ A.P. J, G. Gopal, “Data for:Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network”, Mendeley Data, V1, 2019.
﹝43﹞ R. Hadsell, S. Chopra, and Y. LeCun, “Dimension-ality reduction by learning an invariant mapping”, In CVPR, 2006.
﹝44﹞ Y. Wen, K. Zhang, Z. Li, “A discriminative feature learning approach for deep face recognition”, In European conference on computer vision, pp. 499-515, 2016.
﹝45﹞ B. Polyak, “Some methods of speeding up the convergence of iteration methods”, USSR Computational Mathematics and Mathematical Physics, 4(5), pp. 1-17, 1964.
﹝46﹞ D. Rumelhart, G. Hinton, R. Williams, “ Learning representations by back-propagating errors”, Nature, 323(6088), pp. 533-536, 1986.
﹝47﹞ N. Qian, “On the momentum term in gradient descent learning algorithms”, Neural networks, 12(1), pp. 145-151, 1999.
﹝48﹞ I. Sutskever, J. Martens, G .Dahl, “On the importance of initialization and momentum in deep learning”, In International conference on machine learning, pp. 1139-1147, 2013.
﹝49﹞ D. Kingma, J. Ba “Adam: A method for stochastic optimization”, arXiv preprint arXiv:1412.6980, 2014.
﹝50﹞ Oord, Y. Li, O. Vinyals, “ Representation learning with contrastive predictive coding”, arXiv preprint arXiv:1807.03748, 2018.
﹝51﹞ J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov, “Neighbourhood Components Analysis”, Advances in Neural Information Processing Systems, 17, pp. 513-520, 2004.
﹝52﹞ Y. Wen, K. Zhang, Z. Li, “A comprehensive study on center loss for deep face recognition”, International Journal of Computer Vision, 127(6), pp. 668-683, 2019.
﹝53﹞ G. Munkvold, D. White, “Compendium of Corn Diseases”, 4th ed. St. Paul, Minnesota, USA: The American Phytopathological Society Press, 2016.
﹝54﹞ Wen, “A Discriminative Feature Learning Approach for Deep Face Recognition”, 2016.
﹝55﹞ D. Shah, H. Dillard, “Yield loss in sweet corn caused by Puccinia sorghi: A meta-analysis”, Plant Disease, 90(11), pp. 1413-1418, 2006.
﹝56﹞ K. Sohn, “Improved Deep Metric Learning with Multi-class N-pair Loss Objective”, Advances in Neural Information Processing Systems, 29, pp. 1857-1865, 2016.
﹝57﹞ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, “Attention is All you Need”, Advances in Neural Information Processing Systems, 30, pp. 5998-6008, 2017.
﹝58﹞ Z. Wu, Y. Xiong, S. X. Yu, D. Lin, “Unsupervised Feature Learning via Non-parametric Instance Discrimination”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733-3742, 2018.
指導教授 陳以錚(Yi-Jheng Chen) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明