參考文獻 |
﹝1﹞ 朱育聖,「運用類神經網路進行植物病害影像檢測—以蘭花為例」,朝陽科技大學資訊管理系研究所碩士論文,2020。
﹝2﹞ 葉少昊,「利用深度學習提升蔬菜蟲害辨識之研究」,逢甲大學資訊電機工程碩士在職專班研究所碩士論文,2022。
﹝3﹞ 李湘渝,「基於卷積神經網路之深度學習方法之蘋果葉面病害辨識與分類」,國立屏東科技大學資訊管理系所研究所碩士論文,2022。
﹝4﹞ 楊維竹,「應用深度學習技術於茶葉病害影像分類問題」,南華大學資訊管理學系研究所碩士論文,2024。
﹝5﹞ 蕭嘉榮,「人工智慧影像辨識技術應用於草莓病害檢測」,國立聯合大學機械工程學系研究所碩士論文,2020。
﹝6﹞ 王靖惠,「使用深度學習於檢測番茄病害」,國立中正大學資訊管理學系碩士在職專班研究所碩士論文,2020。
﹝7﹞ R.A. Guler, N. Neverova, and I. Kokkinos, “ DensePose: Dense human pose estimation in the wild”, CVPR, 2018.
﹝8﹞ 樊湘鵬,「基於改進區域卷積神經網路的田間玉米葉部病害識別」,華南農業大學學報,41(6),82-91頁,2020。
﹝9﹞ 黃如郁,「應用對比學習與全域池化於多標籤圖像分類及視覺化方法之研究」,國立臺灣科技大學資訊管理系研究所碩士論文,2024。
﹝10﹞ 黃家興,「影像擴增在自監督比對學習的影像分類之研究」,國立清華大學智慧製造跨院高階主管碩士在職學位碩士論文,2022。
﹝11﹞ S. Mohanty, D. Hughes, & M. Salathé, “Using deep learning for image-based plant disease detection”, Frontiers in plant science, Vol. 7, pp. 1419, 2016.
﹝12﹞ S. Brahman, M. Khan, &H. Rhaman, “A multi-staged framework with convolutional neural network for cotton leaf disease recognition”, Multimedia Tools and Applications, Vol. 77, no. 12, pp. 15287-15308, 2017.
﹝13﹞ G. Polder, P. Sanchez, & M. Klein, “Plant phenomics and virus population studies: Connecting the visual with the molecular”, Annual Review of Phytopathology, Vol. 57, pp. 287-310, 2019.
﹝14﹞ W. Jinguo, “Identification of wheat leaf diseases based on deep convolutional neural networks”, Sensors, Vol. 21, no. 6, pp. 1-17, 2021.
﹝15﹞ R. Hadsell, S. Chopra, Y. LeCun, “Dimension-ality reduction by learning an invariant mapping”, In CVPR,2006.
﹝16﹞ N. Dap, M. Ali, H. Thi, “Using Deep Learning for Plant Disease Detection”, Journal of Nanotechnology in Engineering and Medicine, Vol. 10, no. 4, 2020.
﹝17﹞ Sumin, “Transfer learning for fruit disease identification by ensembling high performing deep convolutional neural networks”, Information Processing in Agriculture, Vol. 9, pp. 164-175, 2022.
﹝18﹞ Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, 86(11), pp. 2278-2324, 1998.
﹝19﹞ A. Krizhevsky, I. Sutskever, & G. Hinton, “ Imagenet classification with deep convolutional neural networks”, In Advances in neural information processing systems, pp. 1097-1105, 2012.
﹝20﹞ K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, arXiv preprint arXiv:1409.1556, 2014.
﹝21﹞ C. Szegedy, W. Liu, Jia “Going deeper with convolutions”, In Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 1-9, 2015.
﹝22﹞ K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
﹝23﹞ G. Huang, Z. Liu, V. D. M., “Densely connected convolutional networks”, In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 4700-4708, 2017.
﹝24﹞ M. Abdel-Hamid, A. R., H. Jiang, “Convolutional neural networks for speech recognition”, IEEE/ACM Transactions on audio, speech, and language processing, 22(10), 1533-1545, 2014.
﹝25﹞ Y. Kim “ Convolutional neural networks for sentence classification”, arXiv preprint arXiv:1408.5882, 2014.
﹝26﹞ B. Zoph, Q. V. Le, "Neural architecture search with reinforcement learning", arXiv preprint arXiv:1611.01578, 2016.
﹝27﹞ B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, "Learning transferable architectures for scalable image recognition", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697-8710, 2018.
﹝28﹞ H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, "Efficient neural architecture search via parameters sharing", International Conference on Machine Learning, pp. 4095-4104, 2018.
﹝29﹞ C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. J. Li, L. Fei-Fei, A. Yuille, J. Huang, K. Murphy, "Progressive neural architecture search", Proceedings of the European conference on computer vision (ECCV), pp. 19-34, 2018.
﹝30﹞ M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le, "Mnasnet: Platform-aware neural architecture search for mobile", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.
﹝31﹞ Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, “What Makes for Good Views for Contrastive Learning?” In Advances in Neural Information Processing Systems, Volume 33, pp. 6827–6839, 2020.
﹝32﹞ T. Chen, S. Kornblith, M. Norouzi, G. Hinton, “A Simple Framework for Contrastive Learning of Visual Representations”, In Proceedings of the 37th International Conference on Machine Learning, PMLR, Vienna, Austria, pp. 1597–1607, 2020.
﹝33﹞ T. Chen, S. Kornblith, K. Swersky, M. Norouzi, G.E. Hinton “Self-Supervised Models Are Strong Semi-Supervised Learners”, In Advances in Neural Information Processing Systems, Curran Associates, Inc.: New York, NY, USA, Volume 33, pp. 22243–22255, 2020.
﹝34﹞ M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, “Unsupervised Learning of Visual Features by Contrasting Cluster Assignments”, In Advances in Neural Information Processing System, Volume 33, pp. 9912–9924, 2020.
﹝35﹞ J. Grill, F. Strub, F. Altché, C. Tallec, P.H. Richemond, E. Buchatskaya, C. Doersch, B.A. Pires, Z.D. Guo, M.G. Azar, “A New Approach to Self-Supervised Learning”, Adv. Neural Inf. Processing Syst, 2020.
﹝36﹞ M. Wei, Y. Liu, T. Zhang, Z. Wang, J. Zhu, “Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples”, 2021.
﹝37﹞ Y. Ding, J. Zhuang, P. Ding, M. Jia, “Self-Supervised Pretraining via Contrast Learning for Intelligent Incipient Fault Detection of Bearings”, Reliab. Eng. Syst. Saf., 218, 108126, 2022.
﹝38﹞ P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu and D. Krishnan, “Supervised Contrastive Learning”, In Proc. of NeurIPS, 2020.
﹝39﹞ K. He, H. Fan, Y. Wu, S. Xie, “Momentum Contrast for Unsupervised Visual Representation Learning”, Facebook AI Research (FAIR), 2020.
﹝40﹞ Y. Zhu, J. Tang, M. Wang, M. “Cross-modal contrastive learning for text-to-image generation”, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , pp. 833-842, 2021.
﹝41﹞ D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, N. Batra, “PlantDoc: a dataset for visual plant disease detection”, InProceedings of the 7th ACM IKDD CoDS and 25th COMAD, pp. 249-253, 2020.
﹝42﹞ A.P. J, G. Gopal, “Data for:Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network”, Mendeley Data, V1, 2019.
﹝43﹞ R. Hadsell, S. Chopra, and Y. LeCun, “Dimension-ality reduction by learning an invariant mapping”, In CVPR, 2006.
﹝44﹞ Y. Wen, K. Zhang, Z. Li, “A discriminative feature learning approach for deep face recognition”, In European conference on computer vision, pp. 499-515, 2016.
﹝45﹞ B. Polyak, “Some methods of speeding up the convergence of iteration methods”, USSR Computational Mathematics and Mathematical Physics, 4(5), pp. 1-17, 1964.
﹝46﹞ D. Rumelhart, G. Hinton, R. Williams, “ Learning representations by back-propagating errors”, Nature, 323(6088), pp. 533-536, 1986.
﹝47﹞ N. Qian, “On the momentum term in gradient descent learning algorithms”, Neural networks, 12(1), pp. 145-151, 1999.
﹝48﹞ I. Sutskever, J. Martens, G .Dahl, “On the importance of initialization and momentum in deep learning”, In International conference on machine learning, pp. 1139-1147, 2013.
﹝49﹞ D. Kingma, J. Ba “Adam: A method for stochastic optimization”, arXiv preprint arXiv:1412.6980, 2014.
﹝50﹞ Oord, Y. Li, O. Vinyals, “ Representation learning with contrastive predictive coding”, arXiv preprint arXiv:1807.03748, 2018.
﹝51﹞ J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov, “Neighbourhood Components Analysis”, Advances in Neural Information Processing Systems, 17, pp. 513-520, 2004.
﹝52﹞ Y. Wen, K. Zhang, Z. Li, “A comprehensive study on center loss for deep face recognition”, International Journal of Computer Vision, 127(6), pp. 668-683, 2019.
﹝53﹞ G. Munkvold, D. White, “Compendium of Corn Diseases”, 4th ed. St. Paul, Minnesota, USA: The American Phytopathological Society Press, 2016.
﹝54﹞ Wen, “A Discriminative Feature Learning Approach for Deep Face Recognition”, 2016.
﹝55﹞ D. Shah, H. Dillard, “Yield loss in sweet corn caused by Puccinia sorghi: A meta-analysis”, Plant Disease, 90(11), pp. 1413-1418, 2006.
﹝56﹞ K. Sohn, “Improved Deep Metric Learning with Multi-class N-pair Loss Objective”, Advances in Neural Information Processing Systems, 29, pp. 1857-1865, 2016.
﹝57﹞ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, “Attention is All you Need”, Advances in Neural Information Processing Systems, 30, pp. 5998-6008, 2017.
﹝58﹞ Z. Wu, Y. Xiong, S. X. Yu, D. Lin, “Unsupervised Feature Learning via Non-parametric Instance Discrimination”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733-3742, 2018. |