參考文獻 |
[1] Mota, P., Mariano, A., & Monteiro, S. (2018). TAXONOMY OF THE INDUSTRY 4.0: THEORETICAL AND PRACTICAL CONTRIBUTIONS TO A NEW CONTEXT. . https://doi.org/10.17605/OSF.IO/2Y9B4.
[2] Ahmed, Imran, Gwanggil Jeon and Francesco Piccialli. “From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where.” IEEE Transactions on Industrial Informatics 18 (2022): 5031-5042.
[3] S. Qin, J. Bernstein and C. Chan. "Hydrogen etching for semiconductor materials in plasma doping experiments." Journal of Electronic Materials, 25 (1996): 507-511. https://doi.org/10.1007/BF02666628.
[4] Qin, S., Bernstein, J., & Chan, C., 1996. Hydrogen etching for semiconductor materials in plasma doping experiments. Journal of Electronic Materials, 25, pp. 507-511. https://doi.org/10.1007/BF02666628.
[5] Ryu, S., Yim, S., Wi, S., Jung, S., Kim, S., & Kim, B., 2022. Design a GA-based PID Controller for a Pressure Control of a Process Chamber using a Time-domain System Identification. 2022 22nd International Conference on Control, Automation and Systems (ICCAS), pp. 484-487. https://doi.org/10.23919/ICCAS55662.2022.10003779.
[6] Huang, Z., Geyer, N., Werner, P., Boor, J., & Gösele, U., 2011. Metal‐Assisted Chemical Etching of Silicon: A Review. Advanced Materials, 23. https://doi.org/10.1002/adma.201001784.
[7] Bogumilowicz, Y., Hartmann, J., Truche, R., Campidelli, Y., Rolland, G., & Billon, T., 2005. Chemical vapour etching of Si, SiGe and Ge with HCl; applications to the formation of thin relaxed SiGe buffers and to the revelation of threading dislocations. Semiconductor Science and Technology, 20, pp. 127 - 134. https://doi.org/10.1088/0268-1242/20/2/004.
[8] Chen, L., & Chen, C. (2017). Bumping UBM metal residue defect analysis and improvement using techniques of design of experiment (DOE). 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1751-1755.
[9] F. Briones, J. SANCHEZ LEAL and I. M. Pastrana. "Armentum: a hybrid direct search optimization methodology." Journal of Industrial Engineering International, 12 (2016): 407-417. https://doi.org/10.1007/S40092-016-0159-5.
[10] Erkan Isikli and S. Ugurlu. "The Role of Computational Intelligence in Experimental Design: A Literature Review." (2016): 213-235. https://doi.org/10.1007/978-3-319-24499-0_8.
[11] B. Duraković. "Design of Experiments Application, Concepts, Examples: State of the Art." Periodicals of Engineering and Natural Sciences (PEN), 5 (2017). https://doi.org/10.21533/PEN.V5I3.145.
[12] Uy, M., & Telford, J.K. (2009). Optimization by Design of Experiment techniques. 2009 IEEE Aerospace conference, 1-10.
[13] Gooding, O.W. (2004). Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods. Current opinion in chemical biology, 8 3, 297-304 .
[14] Chen-Fu Chien, Kuo-Hao Chang and Wen-Chih Wang. "An empirical study of design-of-experiment data mining for yield-loss diagnosis for semiconductor manufacturing." Journal of Intelligent Manufacturing, 25 (2013): 961-972. https://doi.org/10.1007/s10845-013-0791-5.
[15] I. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua Bengio , “Generative adversarial nets.” In NIPS, pp.2672–2680, 2014.
[16] C. Canlin, T. Jian, X. Heng, W. Dandan and Y. Gang, "Virtual Sample Generation Method Based on GAN for Process Data with Its Application," 2022 34th Chinese Control and Decision Conference (CCDC), Hefei, China, 2022, pp. 242-247, doi: 10.1109/CCDC55256.2022.10034395.
[17] Yao, Z., & Zhao, C. (2022). FIGAN: A Missing Industrial Data Imputation Method Customized for Soft Sensor Application. IEEE Transactions on Automation Science and Engineering, 19, 3712-3722.
[18] Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu,”Seqgan: Sequence generative adversarial nets with policy gradient. “ In Thirty-first AAAI conference on artificial intelligence, ArXiv, abs/1609.05473, 2017.
[19] Park, Kijung, Gayeon Kim, Hee-Ra No, Hyun Woo Jeon , Gül E, Okudan Kremer, “Identification of Optimal Process Parameter Settings Based on Manufacturing Performance for Fused Filament Fabrication of CFR-PEEK.” Applied Sciences : n. pag, 2020.
[20] Nath, P., Olson, J.D., Mahadevan, S., & Lee, Y.T. (2020). Optimization of fused filament fabrication process parameters under uncertainty to maximize part geometry accuracy. Additive manufacturing, 35.
[21] Tang, H., Fan, Q., Xu, B., & Wen, J. (2004). A Technological Parameter Optimization Approach in Crude Oil Distillation Process Based on Neural Network. , 866-873. https://doi.org/10.1007/978-3-540-28648-6_138.
[22] Q. Fang, "A global optimization framework for parameter estimation of a wind generation unit model," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, pp. 000048-000052, 2015.
[23] Jeang, A., & Li, H. (2009). An empirical study on the robust design of a semiconductor-bumping process. Journal of Materials Processing Technology, 209, 2986-2993.
[24] Wohlrabe, H., & Wolter, K. (2006). Practical Usage of Design of Experiments in the Production of SMT-Boards. 2006 1st Electronic System Integration Technology Conference, 2, 854-859. https://doi.org/10.1109/ESTC.2006.280111.
[25] Lin, James T., Chien‐Ming Chen, Chun-Chih Chiu , Hsin-Ying Fang,“Simulation optimization with PSO and OCBA for semiconductor back-end assembly.” Journal of Industrial and Production Engineering 30 : 452 - 460,2013.
[26] Xu, Haiqin, Linkun Li, Changqing Shi, Xiaoyu Li, Pengcheng Geng , Xiangsong Kong, “Parameter Optimization Method of Steam Generator Level Controller based on SVM and Improved PSO.” 2022 China Automation Congress (CAC) : 3209-3214,2022.
[27] Lin, J.T., Chen, C., Chiu, C., & Fang, H. (2013). Simulation optimization with PSO and OCBA for semiconductor back-end assembly. Journal of Industrial and Production Engineering, 30, 452 - 460.
[28] Chiu, C., Lai, C., & Chen, C. (2022). An evolutionary simulation-optimization approach for the problem of order allocation with flexible splitting rule in semiconductor assembly. Applied Intelligence, 53, 2593-2615.
[29] Chang, X., Dong, M., & Yang, D. (2013). Multi-objective real-time dispatching for integrated delivery in a Fab using GA based simulation optimization. Journal of Manufacturing Systems, 32, 741-751.
[30] P.J. García Nieto, E. García-Gonzalo, J.C. Álvarez Antón, V.M. González Suárez, R. Mayo Bayón, F. Mateos Martín,“A comparison of several machine learning techniques for the centerline segregation prediction in continuous cast steel slabs and evaluation of its performance.”Journal of Computational and Applied Mathematics,Volume 330,Pages 877-895,2018.
[31] Zimmerling, Clemens, Christian Poppe, Oliver Stein , Luise Kärger, “Optimisation of Manufacturing Process Parameters for Variable Component Geometries using Reinforcement Learning.” Materials & Design ,2022.
[32] Clemens, Z., & Luise, K. (2023). Forming process optimisation for variable geometries by machine learning – Convergence analysis and assessment. Materials Research Proceedings.
[33] Guo, Jiaxian, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu , Jun Wang, “Long Text Generation via Adversarial Training with Leaked Information.” ArXiv abs/1709.08624 ,2017.
[34] Dey, R., Juefei-Xu, F., Boddeti, V.N., & Savvides, M., “RankGAN: A Maximum Margin Ranking GAN for Generating Faces..” ArXiv, abs/1812.08196 ,2018
[35] M. McCann, A. Johnston, “SECOM,” UCI Machine Learning Repository, 2008.
https://archive.ics.uci.edu/dataset/179/secom https://www.kaggle.com/datasets/paresh2047/uci-semcom/discussion
[36] Private company,” D- Electronics,”2024.
[37] Private company,” A-Optronics,”2023.
[38] Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., & Woo, W. ” Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Neural Information Processing Systems.” 2015
[39] Private company,https://www.tel.com/product/manufacturing-process/index.html
[40] Fuśnik, Łukasz & Szafraniak, Bartlomiej & Paleczek, Anna & Grochala, Dominik & Rydosz, Artur. (2022). A Review of Gas Measurement Set-Ups. Sensors. 22. 2557. 10.3390/s22072557. |