參考文獻 |
[1] J. A. Dempsey, S. C. Veasey, B. J. Morgan, and C. P. O’Donnell, “Pathophysiology of Sleep Apnea,” Physiol Rev, vol. 90, no. 1, pp. 47–112, Jan. 2010, doi: 10.1152/physrev.00043.2008.
[2] C. Guilleminault, A. Tilkian, and W. C. Dement, “The Sleep Apnea Syndromes,” Annu Rev Med, vol. 27, no. 1, pp. 465–484, Feb. 1976, doi: 10.1146/annurev.me.27.020176.002341.
[3] C. V. Senaratna et al., “Prevalence of obstructive sleep apnea in the general population: A systematic review,” Sleep Med Rev, vol. 34, pp. 70–81, Aug. 2017, doi: 10.1016/j.smrv.2016.07.002.
[4] R. Heinzer, H. Marti-Soler, and J. Haba-Rubio, “Prevalence of sleep apnoea syndrome in the middle to old age general population,” The Lancet Respiratory Medicine, vol. 4, no. 2. Lancet Publishing Group, pp. e5–e6, Feb. 01, 2016. doi: 10.1016/S2213-2600(16)00006-0.
[5] D. J. Gottlieb and N. M. Punjabi, “Diagnosis and Management of Obstructive Sleep Apnea,” JAMA, vol. 323, no. 14, p. 1389, Apr. 2020, doi: 10.1001/jama.2020.3514.
[6] J.-S. Sunwoo, Y. Hwangbo, W.-J. Kim, M. K. Chu, C.-H. Yun, and K. I. Yang, “Prevalence, sleep characteristics, and comorbidities in a population at high risk for obstructive sleep apnea: A nationwide questionnaire study in South Korea,” PLoS One, vol. 13, no. 2, p. e0193549, Feb. 2018, doi: 10.1371/journal.pone.0193549.
[7] X. Soler et al., “High Prevalence of Obstructive Sleep Apnea in Patients with Moderate to Severe COPD,” Ann Am Thorac Soc, p. 150414075541005, Apr. 2015, doi: 10.1513/AnnalsATS.201407-336OC.
[8] M. Gleeson and W. T. McNicholas, “Bidirectional relationships of comorbidity with obstructive sleep apnoea,” European Respiratory Review, vol. 31, no. 164. European Respiratory Society, Jun. 30, 2022. doi: 10.1183/16000617.0256-2021.
[9] M. Butt, G. Dwivedi, O. Khair, and G. Y. H. Lip, “Obstructive sleep apnea and cardiovascular disease,” Int J Cardiol, vol. 139, no. 1, pp. 7–16, doi: 10.1016/j.ijcard.2009.05.021.
[10] T. Menon and D. K. Kalra, “Sleep Apnea and Heart Failure—Current State-of-The-Art,” Int J Mol Sci, vol. 25, no. 10, p. 5251, May 2024, doi: 10.3390/ijms25105251.
[11] X. Wang et al., “Association of obstructive sleep apnoea with cardiovascular events in women and men with acute coronary syndrome,” European Respiratory Journal, vol. 61, no. 1, Jan. 2023, doi: 10.1183/13993003.01110-2022.
[12] M. Marin-Oto, E. E. Vicente, and J. M. Marin, “Long term management of obstructive sleep apnea and its comorbidities,” Multidisciplinary Respiratory Medicine, vol. 14, no. 1. BioMed Central Ltd., Jul. 04, 2019. doi: 10.1186/s40248-019-0186-3.
[13] C. C. Gonzaga, A. Bertolami, M. Bertolami, C. Amodeo, and D. A. Calhoun, “Obstructive sleep apnea, hypertension and cardiovascular diseases,” J Hum Hypertens, vol. 29, pp. 705–712, 2015, doi: 10.1038/jhh.2015.15.
[14] T. Konečný, T. Kara, and V. Somers, “Obstructive Sleep Apnea and Hypertension: An Update,” Hypertension, vol. 63, pp. 203–209, 2014, doi: 10.1161/HYPERTENSIONAHA.113.00613.
[15] A. Cai, L. Wang, and Y. Zhou, “Hypertension and obstructive sleep apnea,” Hypertension Research, vol. 39, pp. 391–395, 2016, doi: 10.1038/hr.2016.11.
[16] A. M. Das and R. Khayat, “Hypertension in obstructive sleep apnea: risk and therapy,” Expert Rev Cardiovasc Ther, vol. 7, pp. 619–626, 2009, doi: 10.1586/erc.09.25.
[17] H. Becker et al., “Effect of Nasal Continuous Positive Airway Pressure Treatment on Blood Pressure in Patients With Obstructive Sleep Apnea,” Circulation: Journal of the American Heart Association, vol. 107, pp. 68–73, 2003, doi: 10.1161/01.CIR.0000042706.47107.7A.
[18] J. Börgel et al., “Obstructive sleep apnea and blood pressure. Interaction between the blood pressure-lowering effects of positive airway pressure therapy and antihypertensive drugs.,” Am J Hypertens, vol. 17, pp. 1081–1087, 2004, doi: 10.1016/J.AMJHYPER.2004.06.026.
[19] M. Martínez-García et al., “Beyond Resistant Hypertension: Relationship Between Refractory Hypertension and Obstructive Sleep Apnea,” Hypertension, vol. 72, pp. 618–624, 2018, doi: 10.1161/HYPERTENSIONAHA.118.11170.
[20] J. Floras, “Hypertension and Sleep Apnea,” Can J Cardiol, vol. 31 7, pp. 889–897, 2015, doi: 10.1016/j.cjca.2015.05.003.
[21] J. Lam and M. Ip, “Obstructive sleep apnea and the metabolic syndrome,” Expert Rev Respir Med, vol. 3, pp. 177–186, 2009, doi: 10.1586/ers.09.10.
[22] A. Castaneda, E. Jauregui-Maldonado, I. Ratnani, J. Varon, and S. Surani, “Correlation between metabolic syndrome and sleep apnea,” World J Diabetes, vol. 9, pp. 66–71, 2018, doi: 10.4239/wjd.v9.i4.66.
[23] M. Gleeson and W. McNicholas, “Bidirectional relationships of comorbidity with obstructive sleep apnoea,” European Respiratory Review, vol. 31, p., 2022, doi: 10.1183/16000617.0256-2021.
[24] S. N. Framnes and D. M. Arble, “The Bidirectional Relationship Between Obstructive Sleep Apnea and Metabolic Disease,” Front Endocrinol (Lausanne), vol. 9, p., 2018, doi: 10.3389/fendo.2018.00440.
[25] A. Calvin, F. Albuquerque, F. Lopez‐Jimenez, and V. Somers, “Obstructive sleep apnea, inflammation, and the metabolic syndrome,” Metab Syndr Relat Disord, vol. 7 4, pp. 271–278, 2009, doi: 10.1089/met.2008.0093.
[26] A. Lurie, “Metabolic disorders associated with obstructive sleep apnea in adults,” Adv Cardiol, vol. 46, pp. 67–138, 2011, doi: 10.1159/000325106.
[27] M. Ip, B. Lam, M. Ng, W. Lam, K. Tsang, and K. Lam, “Obstructive sleep apnea is independently associated with insulin resistance,” Am J Respir Crit Care Med, vol. 165 5, pp. 670–676, 2002, doi: 10.1164/AJRCCM.165.5.2103001.
[28] M. Ambrosetti, A. Lucioni, S. Conti, R. Pedretti, and M. Neri, “Metabolic syndrome in obstructive sleep apnea and related cardiovascular risk,” Journal of Cardiovascular Medicine, vol. 7, pp. 826–829, 2006, doi: 10.2459/01.JCM.0000250873.01649.41.
[29] L. Drager, S. Togeiro, V. Polotsky, and G. Lorenzi-Filho, “Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome,” J Am Coll Cardiol, vol. 62 7, pp. 569–576, 2013, doi: 10.1016/j.jacc.2013.05.045.
[30] W. McNicholas, “Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease.,” Am J Respir Crit Care Med, vol. 180 8, pp. 692–700, 2009, doi: 10.1164/rccm.200903-0347PP.
[31] C. Shao, H. Qi, Q. Fang, J. Tu, Q. Li, and L. Wang, “Smoking history and its relationship with comorbidities in patients with obstructive sleep apnea,” Tob Induc Dis, vol. 18, p., 2020, doi: 10.18332/tid/123429.
[32] B. Prasad, S. Nyenhuis, and T. Weaver, “Obstructive sleep apnea and asthma: associations and treatment implications.,” Sleep Med Rev, vol. 18 2, pp. 165–171, 2014, doi: 10.1016/j.smrv.2013.04.004.
[33] E. Önal, J. Leech, and M. Lopata, “Relationship between pulmonary function and sleep-induced respiratory abnormalities.,” Chest, vol. 87 4, pp. 437–441, 1985, doi: 10.1378/CHEST.87.4.437.
[34] M. Nácher et al., “Biological consequences of oxygen desaturation and respiratory effort in an acute animal model of obstructive sleep apnea (OSA).,” Sleep Med, vol. 10 8, pp. 892–897, 2009, doi: 10.1016/j.sleep.2008.09.014.
[35] J. V. J. P. S. G. M. O. K. K. M. H. M. Š. V. N. A. K. M. Sova, “Obstructive sleep apnea, depression and cognitive impairment.,” Sleep Med, vol. 72, pp. 50–58, 2020, doi: 10.1016/j.sleep.2020.03.017.
[36] B. S. F. W. K. E. V. E. I. Khawaja, “Obstructive Sleep Apnea in Posttraumatic Stress Disorder Comorbid With Mood Disorder: Significantly Higher Incidence Than in Either Diagnosis Alone.,” Prim Care Companion CNS Disord, vol. 20 4, p. nan, 2018, doi: 10.4088/PCC.18m02281.
[37] W.-C. L. J. Winkelman, “Obstructive Sleep Apnea and Severe Mental Illness: Evolution and Consequences,” Curr Psychiatry Rep, vol. 14, pp. 503–510, 2012, doi: 10.1007/s11920-012-0307-6.
[38] A. G. A. O. B. A. V. R. Osorio, “The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease.,” J Alzheimers Dis, vol. 64 s1, pp. S255–S270, 2018, doi: 10.3233/JAD-179936.
[39] A. G. S. T. F. K. M. S. D. S. P. Białasiewicz, “Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients—Possible Mechanisms Involved and Clinical Implication,” Int J Mol Sci, vol. 23, p. nan, 2022, doi: 10.3390/ijms23020709.
[40] Rosenberg, R. & Doghramji, and P, “Optimal treatment of obstructive sleep apnea and excessive sleepiness,” Sleep Med, vol. 10, pp. 101–102, 2009, doi: 10.1016/j.sleep.2009.02.010.
[41] Gleeson, M, McNicholas, and W, “Bidirectional relationships of comorbidity with obstructive sleep apnoea,” European Respiratory Review, vol. 31, p., 2022, doi: 10.1183/16000617.0256-2021.
[42] Ulander et al., “Side effects to continuous positive airway pressure treatment for obstructive sleep apnoea: changes over time and association to adherence,” Sleep and Breathing, vol. 18, pp. 799–807, 2014, doi: 10.1007/s11325-014-0945-5.
[43] Kribbs et al., “Effects of one night without nasal CPAP treatment on sleep and sleepiness in patients with obstructive sleep apnea,” Am Rev Respir Dis, vol. 147 5, pp. 1162–1168, 1993, doi: 10.1164/AJRCCM/147.5.1162.
[44] Nilius et al., “Upper airway complaints of patients with obstructive sleep apnea - effect of CPAP,” Pneumologie, vol. 61 1, pp. 15–19, 2007, doi: 10.1055/S-2006-954966.
[45] Meslier et al., “A French survey of 3,225 patients treated with CPAP for obstructive sleep apnoea: benefits, tolerance, compliance and quality of life,” Eur Respir J, vol. 12 1, pp. 185–192, 1998, doi: 10.1183/09031936.98.12010185.
[46] Broström et al., “The side‐effects to CPAP treatment inventory: the development and initial validation of a new tool for the measurement of side‐effects to CPAP treatment,” J Sleep Res, vol. 19, p., 2010, doi: 10.1111/j.1365-2869.2010.00825.x.
[47] W. Schmidt-Nowara, A. Lowe, L. Wiegand, R. Cartwright, F. Perez-Guerra, and S. Menn, “Oral appliances for the treatment of snoring and obstructive sleep apnea: a review.,” Sleep, vol. 18 6, pp. 501–510, 1995, doi: 10.1093/SLEEP/18.6.501.
[48] K. Ferguson, T. Ono, A. Lowe, S. Al-Majed, L. Love, and J. Fleetham, “A short-term controlled trial of an adjustable oral appliance for the treatment of mild to moderate obstructive sleep apnoea.,” Thorax, vol. 52, pp. 362–368, 1997, doi: 10.1136/thx.52.4.362.
[49] J. Lim, T. Lasserson, J. Fleetham, and J. Wright, “Oral appliances for obstructive sleep apnoea.,” Cochrane Database Syst Rev, vol. 4, pp. CD004435-, 2006, doi: 10.1002/14651858.CD004435.PUB3.
[50] F. R. de Almeida et al., “Long-term compliance and side effects of oral appliances used for the treatment of snoring and obstructive sleep apnea syndrome.,” J Clin Sleep Med, vol. 1 2, pp. 143–152, 2005, doi: 10.5664/jcsm.8978.
[51] K. Fritsch, A. Iseli, E. Russi, and K. Bloch, “Side effects of mandibular advancement devices for sleep apnea treatment.,” Am J Respir Crit Care Med, vol. 164 5, pp. 813–818, 2001, doi: 10.1164/AJRCCM.164.5.2003078.
[52] E. Rose, R. Staats, C. Virchow, and I. Jonas, “Occlusal and skeletal effects of an oral appliance in the treatment of obstructive sleep apnea.,” Chest, vol. 122 3, pp. 871–877, 2002, doi: 10.1378/CHEST.122.3.871.
[53] M. Hamoda, F. Almeida, and B. Pliska, “Long-term side effects of sleep apnea treatment with oral appliances: nature, magnitude and predictors of long-term changes.,” Sleep Med, vol. 56, pp. 184–191, 2019, doi: 10.1016/J.SLEEP.2018.12.012.
[54] K. Franklin et al., “Effects and side-effects of surgery for snoring and obstructive sleep apnea--a systematic review.,” Sleep, vol. 32 1, pp. 27–36, 2009, doi: 10.5665/SLEEP/32.1.27.
[55] J.-E. C. Holty and C. Guilleminault, “Maxillomandibular advancement for the treatment of obstructive sleep apnea: A systematic review and meta-analysis,” Sleep Med Rev, vol. 14, no. 5, pp. 287–297, Oct. 2010, doi: 10.1016/j.smrv.2009.11.003.
[56] A. Sher, K. Schechtman, and J. Piccirillo, “The efficacy of surgical modifications of the upper airway in adults with obstructive sleep apnea syndrome.,” Sleep, vol. 19 2, pp. 156–177, 1996, doi: 10.1093/SLEEP/19.2.156.
[57] E. Y. Kim, M. Courey, and E. Kezirian, “Treatment of Trigger-Point Hypersensitivity of Gag Reflex following Surgical Treatment of Obstructive Sleep Apnea,” Otolaryngology–Head and Neck Surgery, vol. 145, pp. 1055–1056, 2011, doi: 10.1177/0194599811408243.
[58] C. Budin et al., “Therapeutic alternatives with CPAP in obstructive sleep apnea,” Journal of Mind and Medical Sciences, p., 2019, doi: 10.22543/7674.62.p181189.
[59] M. Cao, J. M. Sternbach, and C. Guilleminault, “Continuous positive airway pressure therapy in obstructive sleep apnea: benefits and alternatives,” Expert Rev Respir Med, vol. 11, pp. 259–272, 2017, doi: 10.1080/17476348.2017.1305893.
[60] J. G. Park, T. I. Morgenthaler, and P. Gay, “Novel and emerging nonpositive airway pressure therapies for sleep apnea,” Chest, vol. 144 6, pp. 1946–1952, 2013, doi: 10.1378/chest.13-0273.
[61] M. Ghadiri and R. R. Grunstein, “Clinical side effects of continuous positive airway pressure in patients with obstructive sleep apnoea,” Respirology, vol. 25, no. 6, pp. 593–602, Jun. 2020, doi: 10.1111/resp.13808.
[62] M. Rana, J. August, J. Levi, G. Parsi, M. Motro, and W. DeBassio, “Alternative Approaches to Adenotonsillectomy and Continuous Positive Airway Pressure (CPAP) for the Management of Pediatric Obstructive Sleep Apnea (OSA): A Review,” Sleep Disord, vol. 2020, pp. 1–11, Jul. 2020, doi: 10.1155/2020/7987208.
[63] I. M. Colrain et al., “A multicenter evaluation of oral pressure therapy for the treatment of obstructive sleep apnea,” Sleep Med, vol. 14, no. 9, pp. 830–837, Sep. 2013, doi: 10.1016/j.sleep.2013.05.009.
[64] C.-Y. Cheng, C.-C. Chen, M.-T. Lo, C. Guilleminault, and C.-M. Lin, “Evaluation of efficacy and safety of intraoral negative air pressure device in adults with obstructive sleep apnea in Taiwan,” Sleep Med, vol. 81, pp. 163–168, May 2021, doi: 10.1016/j.sleep.2021.02.013.
[65] T.-C. Hung et al., “Building a model to precisely target the responders of a novel intermittent negative air pressure device-with mechanism definition,” Sleep Med, vol. 72, pp. 20–27, Aug. 2020, doi: 10.1016/j.sleep.2020.03.014.
[66] T.-C. Hung et al., “A novel intermittent negative air pressure device ameliorates obstructive sleep apnea syndrome in adults,” Sleep and Breathing, vol. 23, no. 3, pp. 849–856, Sep. 2019, doi: 10.1007/s11325-018-01778-z.
[67] E. T. Chang et al., “Tongue retaining devices for obstructive sleep apnea: A systematic review and meta-analysis,” Am J Otolaryngol, vol. 38, no. 3, pp. 272–278, May 2017, doi: 10.1016/j.amjoto.2017.01.006.
[68] R. J. Schwab et al., “Examining the Mechanism of Action of a New Device Using Oral Pressure Therapy for the Treatment of Obstructive Sleep Apnea,” Sleep, vol. 37, no. 7, pp. 1237–1247, 2014, doi: 10.5665/sleep.3846.
[69] Y.-H. Kuo et al., “Novel Intraoral Negative Airway Pressure in Drug-Induced Sleep Endoscopy with Target-Controlled Infusion,” Nat Sci Sleep, vol. Volume 13, pp. 2087–2099, Nov. 2021, doi: 10.2147/NSS.S327770.
[70] R. D. Cartwright, “Predicting Response to the Tongue Retaining Device for Sleep Apnea Syndrome,” Archives of Otolaryngology - Head and Neck Surgery, vol. 111, no. 6, pp. 385–388, Jun. 1985, doi: 10.1001/archotol.1985.00800080071008.
[71] W. G. H. Engelke, M. Mendoza, and G. Repetto, “Preliminary radiographic observations of the tongue-repositioning manoeuvre,” The European Journal of Orthodontics, vol. 28, no. 6, pp. 618–623, Dec. 2006, doi: 10.1093/ejo/cjl051.
[72] W. Engelke, W. Engelhardt, M. Mendoza-Gartner, O. Decco, J. Barrirero, and M. Knosel, “Functional treatment of snoring based on the tongue-repositioning manoeuvre,” The European Journal of Orthodontics, vol. 32, no. 5, pp. 490–495, Oct. 2010, doi: 10.1093/ejo/cjp135.
[73] E. J. Kim et al., “The impacts of open-mouth breathing on upper airway space in obstructive sleep apnea: 3-D MDCT analysis,” European Archives of Oto-Rhino-Laryngology, vol. 268, pp. 533–539, 2011, doi: 10.1007/s00405-010-1397-6.
[74] M. Suzuki and T. Tanuma, “The effect of nasal and oral breathing on airway collapsibility in patients with obstructive sleep apnea: Computational fluid dynamics analyses,” PLoS One, vol. 15, 2020, doi: 10.1371/journal.pone.0231262.
[75] L. Ueno et al., “Effects of exercise training in patients with chronic heart failure and sleep apnea,” Sleep, vol. 32, pp. 637–647, 2009, doi: 10.1093/SLEEP/32.5.637.
[76] A. M. Kim et al., “Tongue fat and its relationship to obstructive sleep apnea.,” Sleep, vol. 37, no. 10, pp. 1639–1648, Oct. 2014, doi: 10.5665/sleep.4072.
[77] Ryan et al., “Magnetic resonance imaging of the upper airway in obstructive sleep apnea before and after chronic nasal continuous positive airway pressure therapy.,” Am Rev Respir Dis, vol. 144, pp. 939–944, 1991, doi: 10.1164/ajrccm/144.4.939.
[78] W. Chen, E. Gillett, M. C. K. Khoo, S. L. Davidson Ward, and K. S. Nayak, “Real‐time multislice MRI during continuous positive airway pressure reveals upper airway response to pressure change,” Journal of Magnetic Resonance Imaging, vol. 46, no. 5, pp. 1400–1408, Nov. 2017, doi: 10.1002/jmri.25675.
[79] Schwab et al., “Upper airway and soft tissue structural changes induced by CPAP in normal subjects.,” Am J Respir Crit Care Med, vol. 154, pp. 1106–1116, 1996, doi: 10.1164/ajrccm.154.4.8887600.
[80] Mortimore, I, Kochhar, P, & Douglas, and N, “Effect of chronic continuous positive airway pressure (CPAP) therapy on upper airway size in patients with sleep apnoea/hypopnoea syndrome.,” Thorax, vol. 51, pp. 190–192, 1996, doi: 10.1136/thx.51.2.190.
[81] Jung et al., “Upper airway structural changes induced by CPAP in OSAS patients: a study using drug-induced sleep endoscopy.,” European Archives of Oto-Rhino-Laryngology, vol. 274, pp. 247–252, 2016, doi: 10.1007/s00405-016-4110-7.
[82] S. P. Patil, I. A. Ayappa, S. M. Caples, R. J. Kimoff, S. R. Patel, and C. G. Harrod, “Treatment of Adult Obstructive Sleep Apnea with Positive Airway Pressure: An American Academy of Sleep Medicine Clinical Practice Guideline,” Journal of Clinical Sleep Medicine, vol. 15, no. 02, pp. 335–343, Feb. 2019, doi: 10.5664/jcsm.7640.
[83] R. Lauder and Z. F. Muhl, “Estimation of tongue volume from magnetic resonance imaging.,” Angle Orthod, vol. 61, no. 3, pp. 175–84, 1991, doi: 10.1043/0003-3219(1991)061<0175:EOTVFM>2.0.CO;2.
[84] S. S. Rana, O. P. Kharbanda, and B. Agarwal, “Influence of tongue volume, oral cavity volume and their ratio on upper airway: A cone beam computed tomography study,” J Oral Biol Craniofac Res, vol. 10, no. 2, pp. 110–117, Apr. 2020, doi: 10.1016/j.jobcr.2020.03.006.
[85] K. Tamari, K. Shimizu, M. Ichinose, S. Nakata, and Y. Takahama, “Relationship between tongue volume and lower dental arch sizes.,” Am J Orthod Dentofacial Orthop, vol. 100, no. 5, pp. 453–8, Nov. 1991, doi: 10.1016/0889-5406(91)70085-B.
[86] A. Azarbarzin et al., “Palatal prolapse as a signature of expiratory flow limitation and inspiratory palatal collapse in patients with obstructive sleep apnoea,” European Respiratory Journal, vol. 51, no. 2, p. 1701419, Feb. 2018, doi: 10.1183/13993003.01419-2017.
[87] Y. Shigeta, T. Ogawa, I. Tomoko, G. T. Clark, and R. Enciso, “Soft palate length and upper airway relationship in OSA and non-OSA subjects,” Sleep and Breathing, vol. 14, no. 4, pp. 353–358, Dec. 2010, doi: 10.1007/s11325-009-0318-7.
[88] B. C. Neelapu et al., “Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: A systematic review and meta-analysis of cephalometric studies,” Sleep Med Rev, vol. 31, pp. 79–90, Feb. 2017, doi: 10.1016/j.smrv.2016.01.007.
|