博碩士論文 111522079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.218.38.67
姓名 何若婷(Jo-Ting Ho)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Enhanced Item Representation for Attribute and Context-aware Recommendations)
相關論文
★  Dynamic Overlay Construction for Mobile Target Detection in Wireless Sensor Networks★ 車輛導航的簡易繞路策略
★ 使用傳送端電壓改善定位★ 利用車輛分類建構車載網路上的虛擬骨幹
★ Why Topology-based Broadcast Algorithms Do Not Work Well in Heterogeneous Wireless Networks?★ 針對移動性目標物的有效率無線感測網路
★ 適用於無線隨意網路中以關節點為基礎的分散式拓樸控制方法★ A Review of Existing Web Frameworks
★ 將感測網路切割成貪婪區塊的分散式演算法★ 無線網路上Range-free的距離測量
★ Inferring Floor Plan from Trajectories★ An Indoor Collaborative Pedestrian Dead Reckoning System
★ Dynamic Content Adjustment In Mobile Ad Hoc Networks★ 以影像為基礎的定位系統
★ 大範圍無線感測網路下分散式資料壓縮收集演算法★ 車用WiFi網路中的碰撞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-16以後開放)
摘要(中) 推薦系統在深度學習領域取得了顯著的成功,特別是對於具有大量互動記 錄的項目。然而,這些系統常常面臨由於項目屬性(如價格、品牌、評分 等)稀疏而導致的挑戰,這會 影響它們在預測較少互動項目時的表現。 為了提升整體效能,我們的研究專注於改進 CARCA 模型的項目嵌入層。 這項改進旨在更好地處理那些訓練不足的項目。我們使用了四個真實世界 的推薦系統數據集來評估我們的方法。研究結果顯示,我們的方法在預 測用戶可能感興趣的項目方面,比現有的先進模型更為優越。
摘要(英) Recommendation systems have achieved significant success in the field of deep learning, particularly for items with abundant interaction records. However, these systems often face challenges due to the sparsity of item attributes (such as price, brand, ratings, etc.), which hinders their performance when predicting interactions for less frequently engaged items. To address improve overall perforrmance, our research focuses on improving the item embedding layer of the CARCA model. This enhancement aims to better handle items that have not been adequately trained. We evaluated our approach using four real-world recommendation system datasets. The findings suggest that our method provides superior predictions of items that users may find interesting compared to the current state-of-the-art models.
關鍵字(中) ★ 推薦系統 關鍵字(英) ★ Recommendation System
論文目次 中文摘要/Chinese Abstract i
英文摘要/English Abstract ii
目次/Table of Contents
1 Introduction 1
2 Related Work 4
2.1 Context-AwareRecommendationModels................... 4 2.1.1 Vector-BasedRecommendation .................... 4 2.1.2 Time-AwareRecommendation..................... 5
2.2 Attribute-AwareRecommendationModels .................. 6
2.3 HybridRecommedationModels ........................ 6
2.4 ItemEmbedding ................................ 7
3 Preliminary 9
3.1 AttentionMechanisms ............................. 9 3.1.1 Self-Attention.............................. 9 3.1.2 Multi-HeadAttention.......................... 10 3.1.3 Cross-Attention............................. 11
3.2 CARCA..................................... 12 3.2.1 Profile-LevelFeatureExtractionBranch . . . . . . . . . . . . . . . 13 3.2.2 Target Items Cross-Attention Scoring Branch . . . . . . . . . . . . 13
4 Design 15
4.1 Motivation.................................... 15
4.2 ProblemStatement............................... 15
4.3 ResearchChallenges .............................. 16
4.4 ProposedSystemArchitecture......................... 16
4.4.1 TheItemEncodingLayer ....................... 17
4.4.2 TheSequenceEncodingBlocks .................... 19 4.4.3 TheItemScoringLayer ........................ 20 4.4.4 OptimizingModel............................ 21
5 Performance 22
5.1 Datasets..................................... 22
5.2 ComparisonModels............................... 24
5.3 EvaluationMetrics ............................... 25
5.4 ExperimentalSetup............................... 26
5.5 ExperimentalResultsandAnalysis ...................... 27
5.5.1 FashionDataset............................. 27 5.5.2 BeautyDataset ............................. 28 5.5.3 VideoGamesDataset.......................... 29 5.5.4 MenDataset .............................. 29
5.6 AblationStudy ................................. 30
6 Conclusion 32
參考文獻 [1] Gediminas Adomavicius, Bamshad Mobasher, Francesco Ricci, and Alexander Tuzhilin. Context-aware recommender systems. AI Magazine, 32(3):67–80, Oct. 2011.
[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kir- illov, and Sergey Zagoruyko. End-to-end object detection with transformers, 2020.
[3] Yizhou Chen, Guangda Huzhang, Anxiang Zeng, Qingtao Yu, Hui Sun, Heng-Yi Li, Jingyi Li, Yabo Ni, Han Yu, and Zhiming Zhou. Clustered embedding learning for recommender systems. In Proceedings of the ACM Web Conference 2023, pages 1074–1084, 2023.
[4] Yongjun Chen, Zhiwei Liu, Jia Li, Julian J. McAuley, and Caiming Xiong. Intent contrastive learning for sequential recommendation.
[5] Zefeng Chen, Wensheng Gan, Jiayang Wu, Kaixia Hu, and Hong Lin. Data scarcity in recommendation systems: A survey, 2023.
[6] Mingyue Cheng, Hao Zhang, Qi Liu, Fajie Yuan, Zhi Li, Zhenya Huang, Enhong Chen, Jun Zhou, and Longfei Li. Empowering sequential recommendation from collaborative signals and semantic relatedness, 2024.
[7] Junsu Cho, SeongKu Kang, Dongmin Hyun, and Hwanjo Yu. Unsupervised proxy selection for session-based recommender systems. New York, NY, USA, 2021. Asso- ciation for Computing Machinery.
[8] Junsu Cho, SeongKu Kang, Dongmin Hyun, and Hwanjo Yu. Unsupervised proxy selection for session-based recommender systems. In Proceedings of the 44th International ACM SIGIR Conference on research and development in information retrieval, pages 327–336, 2021.
[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.
[10] Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, and Philip S. Yu. Graph collaborative signals denoising and augmentation for recommendation, 2023.
[11] Antonio A Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. Mixed dimension embeddings with application to memory-efficient recommendation systems. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2786–2791. IEEE, 2021.
[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-machine based neural network for ctr prediction. 2017.
[13] Vinayak Gupta and Srikanta Bedathur. Doing more with less: Overcoming data scarcity for poi recommendation via cross-region transfer. ACM Transactions on Intelligent Systems and Technology, 13(3):1–24, April 2022.
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition, 2015.
[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks, 2016.
[17] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, April 2016.
[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn: Simplifying and powering graph convolution network for recommendation, 2020.
[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272, 2008.
[20] Jiarui Jin, Xianyu Chen, Weinan Zhang, Junjie Huang, Ziming Feng, and Yong Yu. Learn over past, evolve for future: Search-based time-aware recommendation with sequential behavior data. 2022.
[21] W. Kang and J. McAuley. Self-attentive sequential recommendation. In 2018 IEEE International Conference on Data Mining (ICDM), 2018.
[22] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong, and Ed H Chi. Learning to embed categorical features without embed- ding tables for recommendation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 840–850, 2021.
[23] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. Convolutional matrix factorization for document context-aware recommendation. 2016.
[24] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text is all you need: Learning language representations for sequential recommendation. 2023.
[25] Jiacheng Li, Yujie Wang, and Julian McAuley. Time interval aware self-attention for sequential recommendation. 2020.
[26] Sheng Li, Jaya Kawale, and Yun Fu. Deep collaborative filtering via marginalized denoising auto-encoder. 2015.
[27] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101, 2017.
[28] Yimin Lv, Shuli Wang, Beihong Jin, Yisong Yu, Yapeng Zhang, Jian Dong, Yongkang Wang, Xingxing Wang, and Dong Wang. Deep situation-aware interaction network for click-through rate prediction. RecSys ’23, 2023.
[29] Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: theoretical analysis and applications. JMLR.org, 2023.
[30] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based recommendations on styles and substitutes, 2015.
[31] Aleksandr Petrov and Craig Macdonald. Effective and efficient training for sequential recommendation using recency sampling, 2022.
[32] Aleksandr Petrov and Craig Macdonald. A systematic review and replicability study of bert4rec for sequential recommendation, 2022.
[33] Ahmed Rashed, Shereen Elsayed, and Lars Schmidt-Thieme. Context and attribute- aware sequential recommendation via cross-attention. Proceedings of the 16th ACM Conference on Recommender Systems, 2022.
[34] Robert Sroufe Steven A Melnyk Robert Handfield, Steven V Walton. Chapter 3 - the cross-entropy method for optimization. 2013.
[35] Noveen Sachdeva and Julian McAuley. How useful are reviews for recommendation? a critical review and potential improvements. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, July 2020.
[36] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th International Conference on World Wide Web, WWW ’01, page 285–295, New York, NY, USA, 2001. Association for Computing Machinery.
[37] Jiayi Shen, Haotao Wang, Shupeng Gui, Jianchao Tan, Zhangyang Wang, and Ji Liu. Umec: Unified model and embedding compression for efficient recommendation systems. In International Conference on Learning Representations, 2020.
[38] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv. in Artif. Intell., 2009, jan 2009.
[39] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. 2019.
[40] Siyi Tang, Jared A. Dunnmon, Khaled Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel L. Rubin, and Christopher Lee-Messer. Self-supervised graph neural networks for improved electroencephalographic seizure analysis, 2022.
[41] Viet Anh Tran, Guillaume Salha-Galvan, Bruno Sguerra, and Romain Hennequin. Attention mixtures for time-aware sequential recommendation. 2023.
[42] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender systems, 2015.
[43] Zhu Wang, Honglong Chen, Zhe Li, Kai Lin, Nan Jiang, and Feng Xia. Vrconvmf: Visual recurrent convolutional matrix factorization for movie recommendation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022.
[44] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. Global context enhanced graph neural networks for session-based recommendation. New York, NY, USA, 2020. Association for Computing Machinery.
[45] Yanbin Zheng Guirong Yan Wentao Mao, Xiaoxia Mu. Leave-one-out cross- validation-based model selection for multi-input multi-output support vector ma- chine. 2014.
[46] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Sse-pt: Sequential recommendation via personalized transformer. 2020.
[47] Xin Xin, Bo Chen, Xiangnan He, Dong Wang, Yue Ding, and Joemon M. Jose. Cfm: convolutional factorization machines for context-aware recommendation. 2019.
[48] Shuai Zhang, Lina Yao, and Xiwei Xu. Autosvdd++: An efficient hybrid collaborative filtering model via contractive auto-encoders. 2017.
[49] Yin Zhang, Ruoxi Wang, Tiansheng Yao, Xinyang Yi, Lichan Hong, James Caverlee, Ed H. Chi, and Derek Zhiyuan Cheng. Empowering long-tail item recommendation through cross decoupling network (cdn), 2023.
[50] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural networks: A review of methods and applications. CoRR, abs/1812.08434, 2018.
[51] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In Proceedings of the 29th ACM International Conference on Information amp; Knowledge Management. ACM, October 2020.
[52] Zhihui Zhou, Lilin Zhang, and Ning Yang. Contrastive collaborative filtering for cold-start item recommendation. In Proceedings of the ACM Web Conference 2023. ACM, April 2023.
指導教授 孫敏德(Min-Te Sun) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明