參考文獻 |
中文文獻
陳宛君(2023)。訓練問答機器人對學生英文閱讀興趣之影響。桃園市國立中央大學資訊工程學系碩士論文。
林彥宇(2023)。元宇宙加入遊戲化要素之環境對國小學生英文閱讀興趣影響。桃園市國立中央大學資訊工程學系碩士論文。
邱貞瑋(2022)。聊天機器人扮演協調者角色對學生英文閱讀興趣影響。桃園市國立中央大學資訊工程學系碩士論文。
英文文獻
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom′s taxonomy of educational objectives: complete edition. Addison Wesley Longman, Inc.
Babayigit, S., Roulstone, S., & Wren, Y. (2021). Linguistic comprehension and narrative skills predict reading ability: A 9-year longitudinal study. British Journal Educ Psychol, 91(1), 148-168. https://doi.org/10.1111/bjep.12353
Bozkurt, A., Junhong, X., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S., Farrow, R., Bond, M., Nerantzi,C., Honeychurch, S., Bali, M., Dron, J., Mir, K., Stewart, B., Costello, E., Mason, J., Stracke, C. M., & Romero-, & Hall, E. (2023). Speculative futures on ChatGPT and generative artificial intelligence (AI): A collective reflection from the educational landscape. https://doi.org/10.5281/zenodo.7636568
Catts, H. W., Fey, M. E., Zhang, X., & Tomblin, J. B. (1999). Language basis of reading and reading disabilities: Evidence from a longitudinal investigation. Scientific studies of reading, 3(4), 331-361.
Chase, C. C., Chin, D. B., Oppezzo, M. A., & Schwartz, D. L. (2009). Teachable agents and the Protégé Effect: Increasing the Effort Towards Learning. Journal of Science Education and Technology, 18(4), 334-352. https://doi.org/10.1007/s10956-009-9180-4
Chen, T. C., Kaminski, E., Koduri, L., Singer, A., Singer, J., Couldwell, M., Delashaw, J., Dumont, A., & Wang, A. (2023). Chat GPT as a neuro-score calculator: analysis of a large language model’s performance on various neurological exam grading scales. World neurosurgery, 179, e342-e347. https://www.sciencedirect.com/science/article/abs/pii/S1878875023012019
Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2022). Artificial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 25(1), 161-182. https://doi.org/10.1007/s10796-022-10291-4
Chin, C., & Osborne, J. (2008). Students′ questions: a potential resource for teaching and learning science. Studies in science education, 44(1), 1-39.
Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. (2010). Preparing students for future learning with teachable agents. Educational Technology Research and Development, 58, 649-669.
Cohen, C., Bauer, E., & Minniear, J. (2021). Exploring how language exposure shapes oral narrative skills in French-English emergent bilingual first graders. Linguistics and Education, 63. https://doi.org/10.1016/j.linged.2021.100905
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience (pp. 75-77). New York: Harper & Row.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Doroudi, S. & Rismanchian, S. (2023). Four interactions between AI and education: Broadening our perspective on what AI can offer education. In International Conference on Artificial Intelligence in Education (pp. 1-12). Cham: Springer Nature Switzerland.
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., . . . Wright, R. (2023). Opinion paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International journal of information management, 71. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Fiorella, L., & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary educational psychology, 38(4), 281-288. https://doi.org/10.1016/j.cedpsych.2013.06.001
FLATICON. https://www.flaticon.com/
Freire, S. K., Wang, C., & Niforatos, E. (2024). Chatbots in knowledge-intensive contexts: Comparing intent and LLM-based systems. arXiv preprint arXiv:2402.04955.
Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2024). Mathematical capabilities of chatgpt. Advances in Neural Information Processing Systems, 36.
Greifenstein, L., Graßl, I., Heuer, U., & Fraser, G. (2022). Common problems and effects of feedback on fun when programming ozobots in primary school. In Proceedings of the 17th Workshop in Primary and Secondary Computing Education (pp. 1-10).
Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational research, 60(4), 549-571.
Hidi, S., & Baird, W. (1986). Interestingness—A neglected variable in discourse processing. Cognitive science, 10(2), 179-194.
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational psychologist, 41(2), 111-127.
Huttenlocher, J., Vasilyeva, M., Cymerman, E., & Levine, S. (2002). Language input and child syntax. Cognitive psychology, 45(3), 337-374.
Igbaria, M., & Chakrabarti, A. (1990). Computer anxiety and attitudes towards microcomputer use. Behaviour & Information Technology, 9(3), 229-241.
Jeon, J., & Lee, S. (2023). Large language models in education: A focus on the complementary relationship between human teachers and ChatGPT. Education and Information Technologies, 28(12), 15873-15892. https://doi.org/10.1007/s10639-023-11834-1
Ji, H., Han, I., & Ko, Y. (2022). A systematic review of conversational AI in language education: focusing on the collaboration with human teachers. Journal of Research on Technology in Education, 55(1), 48-63. https://doi.org/10.1080/15391523.2022.2142873
Jin, H., Lee, S., Shin, H., & Kim, J. (2024). Teach AI How to Code: Using Large Language Models as Teachable Agents for Programming Education. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1-28).
Karlsen, J., Hjetland, H. N., Hagtvet, B. E., Braeken, J., & Melby-Lervåg, M. (2021). The concurrent and longitudinal relationship between narrative skills and other language skills in children. First Language, 41(5), 555-572. https://doi.org/10.1177/0142723721995688
Kirginas, S. (2022). Improving Students′ Narrative Skills through Gameplay Activities: A Study of Primary School Students. Contemporary Educational Technology, 14(2).
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Lai, E. R. (2011). Metacognition: A literature review. Always learning: Pearson research report, 24, 1-40.
Linnenbrink-Garcia, L., Durik, A. M., Conley, A. M., Barron, K. E., Tauer, J. M., Karabenick, S. A., & Harackiewicz, J. M. (2010). Measuring situational interest in academic domains. Educational and psychological measurement, 70(4), 647-671. https://doi.org/10.1177/0013164409355699
Lippert, A., Shubeck, K., Morgan, B., Hampton, A., & Graesser, A. (2019). Multiple Agent Designs in Conversational Intelligent Tutoring Systems. Technology, Knowledge and Learning, 25(3), 443-463. https://doi.org/10.1007/s10758-019-09431-8
Liu, C.-C., Chen, H. S., Shih, J.-L., Huang, G.-T., & Liu, B.-J. (2011). An enhanced concept map approach to improving children’s storytelling ability. Computers & Education, 56(3), 873-884.
Liu, C.-C., Yang, C.-Y., & Chao, P.-Y. (2019). A longitudinal analysis of student participation in a digital collaborative storytelling activity. Educational Technology Research and Development, 67, 907-929.
Love, R., Law, E., Cohen, P. R., & Kulić, D. (2022). Natural Language Communication with a Teachable Agent. arXiv preprint arXiv:2203.09016.
Mahmood, A., Wang, J., Yao, B., Wang, D., & Huang, C.-M. (2023). LLM-Powered conversational voice assistants: Interaction patterns, opportunities, challenges, and design guidelines. arXiv preprint arXiv:2309.13879.
Matsuda, N. (2022). Teachable agent as an interactive tool for cognitive task analysis: A case study for authoring an expert model. International Journal of Artificial Intelligence in Education, 32(1), 48-75.
Murgia, E., Pera, M. S., Landoni, M., & Huibers, T. (2023). Children on ChatGPT readability in an educational context: Myth or opportunity? In Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization (pp. 311-316).
Mutiarin, D., Hatmanto, E. D., Sari, M. I., Alam, M., Cahill, D., Sharifuddin, J., Senge, M., Robani, A., Saiyut, P., & Nurmandi, A. (2023). Aligning Theory and Practice: Leveraging Chat GPT for Effective English Language Teaching and Learning. E3S Web of Conferences, 440. https://doi.org/10.1051/e3sconf/202344005001
Ndlovu, T. N., & Mhlongo, S. (2020). An investigation into the effects of gamification on students’ situational interest in a learning environment. In 2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1187-1192). IEEE
Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). Empowering student self‐regulated learning and science education through ChatGPT: A pioneering pilot study. British Journal of Educational Technology, 55(4), 1328-1353. https://doi.org/10.1111/bjet.13454
NICHD, E. C. C. R. N. (2005). Pathways to reading: the role of oral language in the transition to reading. Dev Psychol, 41(2), 428-442. https://doi.org/10.1037/0012-1649.41.2.428
Overby, K. (2011). Student-centered learning. Essai, 9(1), 32.
Paas, F., & Sweller, J. (2014). Implications of cognitive load theory for multimedia learning. The Cambridge handbook of multimedia learning, 27, 27-42.
Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutorgenerated algebra hints. arXiv preprint arXiv:2302.06871
Paris, A. H., & Paris, S. G. (2003). Assessing narrative comprehension in young children. Reading Research Quarterly, 38(1), 36-76.
Pesco, D., & Gagné, A. (2015). Scaffolding Narrative Skills: A Meta-Analysis of Instruction in Early Childhood Settings. Early Education and Development, 28(7), 773-793. https://doi.org/10.1080/10409289.2015.1060800
Poskiparta, E., Niemi, P., Lepola, J., Ahtola, A., & Laine, P. (2003). Motivational‐emotional vulnerability and difficulties in learning to read and spell. British Journal of Educational Psychology, 73(2), 187-206.
Qadir, J. (2023). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. 2023 IEEE Global Engineering Education Conference (EDUCON) (pp. 1-9). IEEE.
Qin, H. X., Jin, S., Gao, Z., Fan, M., & Hui, P. (2024). CharacterMeet: Supporting creative writers′ entire story character construction processes through conversation with LLM-powered chatbot avatars. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 1-19).
Ramsdell, C. (2011). Storytelling, Narration, and the “Who I Am” Story. Writing Spaces: Readings on Writing, 2, 270-285.
Rice, R. E., & Shook, D. E. (1988). Access to, usage of, and outcomes from an electronic messaging system. ACM Transactions on Information Systems (TOIS), 6(3), 255-276.
Silvervarg, A., Wolf, R., Blair, K. P., Haake, M., & Gulz, A. (2020). How teachable agents influence students’ responses to critical constructive feedback. Journal of Research on Technology in Education, 53(1), 67-88. https://doi.org/10.1080/15391523.2020.1784812
Trevino, L. K., Lengel, R. H., & Daft, R. L. (1987). Media symbolism, media richness, and media choice in organizations: A symbolic interactionist perspective. Communication Research, 14(5), 553-574.
Trevino, L. K., & Webster, J. (1992). Flow in Computer-Mediated Communication:Electronic Mail and Voice Mail Evaluation and Impacts. Communication Research, 19(5), 539-573. https://doi.org/10.1177/009365092019005001
Wilson, L. O. (2016). Anderson and Krathwohl–Bloom’s taxonomy revised. Understanding the new version of Bloom′s taxonomy. Understanding the new version of Bloom′s taxonomy.
Xiao, C., Xu, S. X., Zhang, K., Wang, Y., & Xia, L. (2023). Evaluating reading comprehension exercises generated by LLMs: A showcase of ChatGPT in education applications. In Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023) (pp. 610-625).
Zoltan, E., & Chapanis, A. (1982). What do professional persons think about computers? Behaviour & Information Technology, 1(1), 55-68. |