博碩士論文 111453036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.117.78.215
姓名 楊涓言(Chuan-Yen Yang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 以機器學習建構新生兒健康之臨床決策支援系統
(Implementing a Clinical Decision Support System for Newborn Health through the application of machine learning techniques)
相關論文
★ 以機器學習技術為基礎建構新生兒孕育健康狀態預測模型★ 電子病歷縮寫消歧與一對多分類任務
★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型★ 精準社群廣告投資策略:以機器學習技術為基礎之社會影響力管理模式
★ 智慧活躍老化之實現:以資料驅動為基礎之AI長者在地交友推薦模式★ 整合深度學習技術與SOR理論之資訊情緒傳遞性探索:新聞生成特質與資訊情感傳播行為
★ 基於混合過濾的電影推薦系統★ 以 Reddit 使用者生成內容探討糖尿病照護社會支持
★ 防範於未然:基於機器學習技術之網路入侵偵測系統★ 可靠度驗證實驗室導入人工智慧技術的可行性探討 -以A公司為例
★ 智慧共同照護之實現: 以資料驅動為基礎之 AI 糖尿病個案管理模式★ Non-Touch Cooperation: An Interactive Mechanism Design Based on Mid-Air Gestures
★ 基於 UGC 的反脆弱社交口碑策略:以臺灣飯店業為例★ 基於機器學習技術之誘導式評論過濾機制:以餐廳評論為例
★ 資料驅動的球隊經營:NBA球隊競爭力與抱團策略之研究★ 基於顧客評論觀點揭示組織調整策略和顧客體驗 優化:以 Covid-19 餐飲業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-1以後開放)
摘要(中) 隨著全球少子化趨勢加劇,嬰兒健康問題尤為重要,早產與低出生體重是導致新生兒死亡和發展障礙的主要因素,對家庭、社會及醫療系統造成重大負擔,且近年來,臺灣亦面臨生育率持續下降的問題,進一步加劇了新生兒健康議題的重要性,因此,如何有效預測並降低早產與低出生體重的發生,成為當前研究的一個重要方向。本研究共設計了兩階段實驗,透過分析孕產婦和新生兒的住院臨床資料,利用機器學習方法找出導致早產和低出生體重的潛在因素,實驗一針對新生兒早產的預測模型,實驗二針對新生兒低出生體重的預測模型。結果顯示,極限梯度提升樹在預測新生兒早產和低出生體重方面表現最佳,透過模型結果,最終建立新生兒健康的臨床決策系統,以作為早期識別高風險新生兒的工具,使醫療專業人員能及時進行干預和護理,提供更為精準的醫療資源配置,以減少不良健康結果的發生。
摘要(英) With the intensification of the global trend of declining birth rates, infant health issues have become particularly important. Premature birth and low birth weight are major factors leading to newborn mortality and developmental disabilities, imposing significant burdens on families, society, and healthcare systems. In recent years, Taiwan has also faced continuously declining birth rates, further emphasizing the importance of newborn health issues. Therefore, effectively predicting and reducing the occurrence of premature birth and low birth weight has become a key focus of current research. This study designed two-stage experiments, analyzing clinical data of pregnant women and newborns to identify potential factors leading to premature birth and low birth weight using machine learning methods. The first experiment focused on a predictive model for premature birth, while the second experiment focused on a predictive model for low birth weight. The results showed that extreme gradient boosting trees performed best in predicting premature birth and low birth weight in newborns. Based on the model results, a clinical decision support system for newborn health was established. This system serves as a tool for early identification of high-risk newborns, enabling healthcare professionals to intervene and provide care promptly, allocate medical resources more accurately, and reduce the occurrence of adverse health outcomes.
關鍵字(中) ★ 機器學習
★ 低出生體重
★ 新生兒健康
★ 臨床決策系統
★ 早產
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 5
1.4 論文架構 6
第二章 文獻探討 8
2.1 早產、低出生體重之定義與發生原因探討 8
2.2 產婦和新生兒生理與臨床特徵 10
2.2.1 產婦生理與臨床特徵 10
2.2.2 新生兒臨床特徵 12
2.3 機器學習於醫療之應用 13
2.4 臨床決策系統 15
第三章 研究方法 16
3.1 個案醫院介紹 16
3.2 資料收集 17
3.2.1 產婦住院資料集 17
3.2.2 新生兒住院資料集 17
3.3 研究方法與架構 19
3.4 資料前置處理 20
3.4.1 資料清理 21
3.4.2 資料整合 21
3.4.3 資料轉換 22
3.5 變數定義 24
3.5.1 自變數 24
3.5.2 依變數 26
3.6 應用於本研究之機器學習方法 27
3.6.1 決策樹(Decision Tree, DT) 27
3.6.2 羅吉斯廻歸(Logistic Regression, LR) 27
3.6.3 隨機森林(Random Forest, RF) 28
3.6.4 支持向量機(Support Vector Machine, SVM) 29
3.6.5 極限梯度提升樹(eXtreme Gradient Boosting, XGBoost) 29
3.7 實驗設計及模型驗證 30
3.7.1 實驗一設計:新生兒早產預測模型 30
3.7.2 實驗二設計:新生兒低出生體重預測模型 32
3.7.3 模型驗證 34
第四章 結果與分析 37
4.1 描述性統計 37
4.2 實驗結果 43
4.2.1 實驗一 43
4.2.2 實驗二 47
4.3 建置臨床決策系統 51
第五章 研究結論與建議 53
5.1 研究結論及貢獻 53
5.2 研究限制 54
5.2.1 研究數據來源的侷限性 54
5.2.2 特徵選擇與模型性能的平衡 54
5.3 未來研究方向與建議 55
參考文獻 56
參考文獻 中文文獻
內政部戶政司(2024)。內政部戶政司全球資訊網 人口統計圖。https://www.ris.gov.tw/app/portal/346
張言博、趙志梅、楊雪、趙霏、綦小蓉、楊春霞、潘安、潘雄飛(2019)。妊娠期糖尿病對早產發生風險影響。中國公共衛生,35(9),1142-1145。
黃新皓(2021)。日本「少子化的三十年」:考察與啟示。全球政治評論,(特集006),1-33。
翟曉蔚、吳田英、梁思銘、秦德燕(2013)。早產低出生體質量兒影響因素探討。研究 [J],31(2),122-125。
衛生福利部國民健康署(2022)。中華民國111年出生通報統計年報https://www.hpa.gov.tw/File/Attach/17595/File_22430.pdf
盧瑞晟、陳玉瑞、林虹伶、李錦霞、蔡孟廷、吳定中(2019)。影響台灣早產兒出生率變化之相關因素初探。醫療資訊雜誌,28(4),1-9。

英文文獻
Abbas, H. T., Alic, L., Erraguntla, M., Ji, J. X., Abdul-Ghani, M., Abbasi, Q. H., & Qaraqe, M. K. (2019). Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test. PLoS One, 14(12), e0219636. https://doi.org/10.1371/journal.pone.0219636
Alberola-Rubio, J., Garcia-Casado, J., Prats-Boluda, G., Ye-Lin, Y., Desantes, D., Valero, J., & Perales, A. (2017). Prediction of labor onset type: Spontaneous vs induced; role of electrohysterography? Computer Methods and Programs in Biomedicine, 144, 127-133. https://doi.org/https://doi.org/10.1016/j.cmpb.2017.03.018
Aradhya, S., Tegunimataka, A., Kravdal, O., Martikainen, P., Myrskyla, M., Barclay, K., & Goisis, A. (2023). Maternal age and the risk of low birthweight and pre-term delivery: a pan-Nordic comparison. Int J Epidemiol, 52(1), 156-164. https://doi.org/10.1093/ije/dyac211
Arayeshgari, M., Najafi-Ghobadi, S., Tarhsaz, H., Parami, S., & Tapak, L. (2023). Machine Learning-based Classifiers for the Prediction of Low Birth Weight. Healthc Inform Res, 29(1), 54-63. https://doi.org/10.4258/hir.2023.29.1.54
Beck, S., Wojdyla, D., Say, L., Betran, A. P., Merialdi, M., Requejo, J. H., Rubens, C., Menon, R., & Van Look, P. F. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ, 88(1), 31-38. https://doi.org/10.2471/BLT.08.062554
Begum, M., Redoy, R. M., & Das Anty, A. (2021). Preterm Baby Birth Prediction using Machine Learning Techniques 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD),
Chami, H. W., Gueye, M., Ndiaye, M. D., Wade, M., Diouf, A., Diakhate, A., Ndour, S. B., Niang, N., & Mbaye, M. (2019). Relation between Obstetric Outcome and Parity. Open Journal of Obstetrics and Gynecology, 09(06), 894-903. https://doi.org/10.4236/ojog.2019.96087
Chawanpaiboon, S., Vogel, J. P., Moller, A. B., Lumbiganon, P., Petzold, M., Hogan, D., Landoulsi, S., Jampathong, N., Kongwattanakul, K., Laopaiboon, M., Lewis, C., Rattanakanokchai, S., Teng, D. N., Thinkhamrop, J., Watananirun, K., Zhang, J., Zhou, W., & Gulmezoglu, A. M. (2019). Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health, 7(1), e37-e46. https://doi.org/10.1016/S2214-109X(18)30451-0
Chen, C. J., Pai, T. W., & Cheng, M. (2015). A support vector machine approach for truncated fingerprint image detection from sweeping fingerprint sensors. Sensors (Basel), 15(4), 7807-7822. https://doi.org/10.3390/s150407807
Daemi, A., Ravaghi, H., & Jafari, M. (2019). Risk factors of neonatal mortality in Iran: a systematic review. Med J Islam Repub Iran, 33, 87. https://doi.org/10.34171/mjiri.33.87
Do, H. J., Moon, K. M., & Jin, H. S. (2022). Machine Learning Models for Predicting Mortality in 7472 Very Low Birth Weight Infants Using Data from a Nationwide Neonatal Network. Diagnostics (Basel), 12(3). https://doi.org/10.3390/diagnostics12030625
Dritsas, E., & Trigka, M. (2022). Data-Driven Machine-Learning Methods for Diabetes Risk Prediction. Sensors (Basel), 22(14). https://doi.org/10.3390/s22145304
Engan, K., Meinich-Bache, Ø., Brunner, S., Myklebust, H., Rong, C., García-Torres, J., Ersdal, H. L., Johannessen, A., Pike, H. M., & Rettedal, S. (2023). Newborn Time - improved newborn care based on video and artificial intelligence - study protocol. BMC Digital Health, 1(1). https://doi.org/10.1186/s44247-023-00010-7
Gandhi, B., Hagan, J., & Patil, M. (2023). EBNEO commentary: Prediction of extubation failure among low birthweight neonates using machine learning. Acta Paediatr, 112(9), 2016-2017. https://doi.org/10.1111/apa.16813
Hinkle, S. N., Albert, P. S., Mendola, P., Sjaarda, L. A., Yeung, E., Boghossian, N. S., & Laughon, S. K. (2014). The association between parity and birthweight in a longitudinal consecutive pregnancy cohort. Paediatr Perinat Epidemiol, 28(2), 106-115. https://doi.org/10.1111/ppe.12099
Hirve, S., & Ganatra, B. (1994). <determinants-of-low-birth-weight-a-community-based-46kcpw22hd.pdf>. 31(10), 1221-1225.
Houweling, T. A. J., van Klaveren, D., Das, S., Azad, K., Tripathy, P., Manandhar, D., Neuman, M., de Jonge, E., Been, J. V., Steyerberg, E., & Costello, A. (2019). A prediction model for neonatal mortality in low- and middle-income countries: an analysis of data from population surveillance sites in India, Nepal and Bangladesh. Int J Epidemiol, 48(1), 186-198. https://doi.org/10.1093/ije/dyy194
Hu, X., Hu, X., Yu, Y., & Wang, J. (2023). Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm. Front Endocrinol (Lausanne), 14, 1105062. https://doi.org/10.3389/fendo.2023.1105062
Jafari, F., Eftekhar, H., Pourreza, A., & Mousavi, J. (2010). Socio-economic and medical determinants of low birth weight in Iran: 20 years after establishment of a primary healthcare network. Public Health, 124(3), 153-158. https://doi.org/https://doi.org/10.1016/j.puhe.2010.02.003
Jan, Y. T., Tsai, P. S., Huang, W. H., Chou, L. Y., Huang, S. C., Wang, J. Z., Lu, P. H., Lin, D. C., Yen, C. S., Teng, J. P., Mok, G. S. P., Shih, C. T., & Wu, T. H. (2023). Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors. Insights Imaging, 14(1), 68. https://doi.org/10.1186/s13244-023-01412-x
K, S. D., N, P. H., & R, J. (2022). Comparison of Post-operative Complications among Patients Undergoing Cesarean Section vs Normal Vaginal Delivery. Scholars International Journal of Obstetrics and Gynecology, 5(6), 233-237. https://doi.org/10.36348/sijog.2022.v05i07.003
Kuhle, S., Maguire, B., Zhang, H., Hamilton, D., Allen, A. C., Joseph, K. S., & Allen, V. M. (2018). Comparison of logistic regression with machine learning methods for the prediction of fetal growth abnormalities: a retrospective cohort study. BMC Pregnancy Childbirth, 18(1), 333. https://doi.org/10.1186/s12884-018-1971-2
Kwok, T. C., Henry, C., Saffaran, S., Meeus, M., Bates, D., Van Laere, D., Boylan, G., Boardman, J. P., & Sharkey, D. (2022). Application and potential of artificial intelligence in neonatal medicine. Semin Fetal Neonatal Med, 27(5), 101346. https://doi.org/10.1016/j.siny.2022.101346
Langsetmo, L., Schousboe, J. T., Taylor, B. C., Cauley, J. A., Fink, H. A., Cawthon, P. M., Kado, D. M., Ensrud, K. E., & Osteoporotic Fractures in Men Research, G. (2023). Advantages and Disadvantages of Random Forest Models for Prediction of Hip Fracture Risk Versus Mortality Risk in the Oldest Old. JBMR Plus, 7(8), e10757. https://doi.org/10.1002/jbm4.10757
Lee, J., Cai, J., Li, F., & Vesoulis, Z. A. (2021). Predicting mortality risk for preterm infants using random forest. Sci Rep, 11(1), 7308. https://doi.org/10.1038/s41598-021-86748-4
Liu, R., Liu, Y., Zhang, F., Wei, J., & Wu, L. (2023). A cuproptosis random forest cox score model-based evaluation of prognosis, mutation characterization, immune infiltration, and drug sensitivity in hepatocellular carcinoma. Front Immunol, 14, 1146411. https://doi.org/10.3389/fimmu.2023.1146411
Loomans, E. M., van Dijk, A. E., Vrijkotte, T. G., van Eijsden, M., Stronks, K., Gemke, R. J., & Van den Bergh, B. R. (2013). Psychosocial stress during pregnancy is related to adverse birth outcomes: results from a large multi-ethnic community-based birth cohort. Eur J Public Health, 23(3), 485-491. https://doi.org/10.1093/eurpub/cks097
Monfared, V., & Hashemi, A. (2023). Prediction Analysis of Preterm Neonates Mortality using Machine Learning Algorithms via Python Programming. bioRxiv. https://doi.org/10.1101/2023.01.20.524905
Neamtu, B. M., Visa, G., Maniu, I., Ognean, M. L., Perez-Elvira, R., Dragomir, A., Agudo, M., Sofariu, C. R., Gheonea, M., Pitic, A., Brad, R., Matei, C., Teodoru, M., & Bacila, C. (2021). A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury. Int J Environ Res Public Health, 18(9). https://doi.org/10.3390/ijerph18094807
Peelen, M. J. C. S., Kazemier, B. M., Ravelli, A. C. J., De Groot, C. J. M., Van Der Post, J. A. M., Mol, B. W. J., Hajenius, P. J., & Kok, M. (2016). Impact of fetal gender on the risk of preterm birth, a national cohort study. Acta Obstetricia et Gynecologica Scandinavica, 95(9), 1034-1041. https://doi.org/https://doi.org/10.1111/aogs.12929
Pusdekar, Y. V., Patel, A. B., Kurhe, K. G., Bhargav, S. R., Thorsten, V., Garces, A., Goldenberg, R. L., Goudar, S. S., Saleem, S., Esamai, F., Chomba, E., Bauserman, M., Bose, C. L., Liechty, E. A., Krebs, N. F., Derman, R. J., Carlo, W. A., Koso-Thomas, M., Nolen, T. L., . . . Hibberd, P. L. (2020). Rates and risk factors for preterm birth and low birthweight in the global network sites in six low- and low middle-income countries. Reprod Health, 17(Suppl 3), 187. https://doi.org/10.1186/s12978-020-01029-z
Quellec, G., Kowal, J., Hasler, P. W., Scholl, H. P. N., Zweifel, S., Konstantinos, B., de Carvalho, J. E. R., Heeren, T., Egan, C., Tufail, A., & Maloca, P. M. (2019). Feasibility of support vector machine learning in age-related macular degeneration using small sample yielding sparse optical coherence tomography data. Acta Ophthalmol, 97(5), e719-e728. https://doi.org/10.1111/aos.14055
Ravindran, S., Jambek, A. B., Muthusamy, H., & Neoh, S.-C. (2015). A Novel Clinical Decision Support System Using Improved Adaptive Genetic Algorithm for the Assessment of Fetal Well-Being. Computational and Mathematical Methods in Medicine, 2015(1), 283532. https://doi.org/https://doi.org/10.1155/2015/283532
Remya, K., Ramya, R., Sadim, M., Kalpana, B., & Amirthayogam, G. (2023, 12-13 Dec. 2023). Artificial Intelligence Techniques for Early Prediction of Neonatal Jaundice. 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM),
Sharma, P. (2023). Advanced maternal age: maternal and perinatal outcomes. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 12(4), 1133-1139. https://doi.org/10.18203/2320-1770.ijrcog20230827
Silva, M. D. B., de Oliveira, R. V. C., da Silveira Barroso Alves, D., & Melo, E. C. P. (2021). Predicting risk of early discontinuation of exclusive breastfeeding at a Brazilian referral hospital for high-risk neonates and infants: a decision-tree analysis. Int Breastfeed J, 16(1), 2. https://doi.org/10.1186/s13006-020-00349-x
Singh, R., Bisht, N., & Parveen, H. (2019). Characteristics, Causes and Early Interventions for Preterm Birth - A Review Paper. International Journal of Current Microbiology and Applied Sciences, 8(05), 1573-1580. https://doi.org/10.20546/ijcmas.2019.805.182
Sudha, Sehrawat, H., Singh, Y., & Jaglan, V. (2022). Machine Learning Approaches For Disease Prediction:- A Review 2022 IEEE World Conference on Applied Intelligence and Computing (AIC),
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine, 3(1), 17. https://doi.org/10.1038/s41746-020-0221-y
Turova, V., Sidorenko, I., Eckardt, L., Rieger-Fackeldey, E., Felderhoff-Muser, U., Alves-Pinto, A., & Lampe, R. (2020). Machine learning models for identifying preterm infants at risk of cerebral hemorrhage. PLoS One, 15(1), e0227419. https://doi.org/10.1371/journal.pone.0227419
Walani, S. R. (2020). Global burden of preterm birth. Int J Gynaecol Obstet, 150(1), 31-33. https://doi.org/10.1002/ijgo.13195
Ward, C., & Caughey, A. B. (2022). Late preterm births: neonatal mortality and morbidity in twins vs. singletons. The Journal of Maternal-Fetal & Neonatal Medicine, 35(25), 7962-7967. https://doi.org/10.1080/14767058.2021.1939303
WHO. (2023). Improving maternal and newborn health and survival and reducing stillbirth Progress report 2023.
Xu, Y., Yang, X., Huang, H., Peng, C., Ge, Y., Wu, H., Wang, J., Xiong, G., & Yi, Y. (2019). Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 28(12), 104441. https://doi.org/https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104441
指導教授 曾筱珽(Hsiao-Ting Tseng) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明