參考文獻 |
Adelani, D. I., Mai, H., Fang, F., Nguyen, H. H., Yamagishi, J., & Echizen, I. (2020). Generating
Sentiment-Preserving Fake Online Reviews Using Neural Language Models and Their
Human- and Machine-Based Detection. In L. Barolli, F. Amato, F. Moscato, T. Enokido,
& M. Takizawa (Eds.), Advanced Information Networking and Applications (Vol. 1151,
pp. 1341–1354). Springer International Publishing. https://doi.org/10.1007/978-3-030-
44041-1_114
Ahmed, S., & Muhammad, F. (2019). Using Boosting Approaches to Detect Spam Reviews. 2019
1st International Conference on Advances in Science, Engineering and Robotics
Technology (ICASERT), 1–6. https://doi.org/10.1109/ICASERT.2019.8934467
Banerjee, S., Chua, A. Y. K., & Kim, J. (2017). Don’t be deceived: Using linguistic analysis to
learn how to discern online review authenticity. Journal of the Association for Information
Science and Technology, 68(6), 1525–1538. https://doi.org/10.1002/asi.23784
Barbado, R., Araque, O., & Iglesias, C. A. (2019). A framework for fake review detection in online
consumer electronics retailers. Information Processing & Management, 56(4), 1234–1244.
https://doi.org/10.1016/j.ipm.2019.03.002
Jabeur, S. B., Ballouk, H., Arfi, W. B., & Sahut, J. M. (2023). Artificial intelligence applications
in fake review detection: Bibliometric analysis and future avenues for research. Journal of
Business Research, 158, 113631. https://doi.org/10.1016/j.jbusres.2022.113631
Birim, Ş. Ö., Kazancoglu, I., Kumar Mangla, S., Kahraman, A., Kumar, S., & Kazancoglu, Y.
(2022). Detecting fake reviews through topic modelling. Journal of Business Research,
149, 884–900. https://doi.org/10.1016/j.jbusres.2022.05.081
48
Carbonell, G., Barbu, C.-M., Vorgerd, L., & Brand, M. (2019). The impact of emotionality and
trust cues on the perceived trustworthiness of online reviews. Cogent Business &
Management.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic
Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16(1),
321–357.
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
785–794. https://doi.org/10.1145/2939672.2939785
Dellarocas, C. (2006). Strategic Manipulation of Internet Opinion Forums: Implications for
Consumers and Firms. Management Science, 52(10), 1577–1593.
https://doi.org/10.1287/mnsc.1060.0567
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv.
http://arxiv.org/abs/1810.04805
Dimoka, A., Hong, Y., & Pavlou, P. A. (2012). On Product Uncertainty in Online Markets: Theory
and Evidence. MIS Quarterly, 36(2), 395–426. https://doi.org/10.2307/41703461
Dong, B., Li, M., & Sivakumar, K. (2019). Online Review Characteristics and Trust: A Cross-
Country Examination. Decision Sciences, 50(3), 537–566.
https://doi.org/10.1111/deci.12339
Duma, R., Niu, Z., Nyamawe, A., Tchaye-Kondi, J., & Yusuf, A. (2023). A Deep Hybrid Model
for fake review detection by jointly leveraging review text, overall ratings, and aspect
ratings. Soft Computing, 27, 1–16. https://doi.org/10.1007/s00500-023-07897-4
49
Elmogy, A. M. (2021). Fake Reviews Detection using Supervised Machine Learning. International
Journal of Advanced Computer Science and Applications, 12(1).
Filieri, R., Alguezaui, S., & McLeay, F. (2015). Why do travelers trust TripAdvisor? Antecedents
of trust towards consumer-generated media and its influence on recommendation adoption
and word of mouth. Tourism Management, 51, 174–185.
https://doi.org/10.1016/j.tourman.2015.05.007
Fogel, D., Fuentes, J. L., López, C., & Soto, L. M. (2018). Association between an ectoparasitic
copepod (Caligus sp.) and the monogenean Udonella cf. Caligorum Johnston 1835 on a
catfish population. Journal of Helminthology, 92(2), 250–253. Cambridge Core.
https://doi.org/10.1017/S0022149X17000153
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the relationship between reviews and
sales: The role of reviewer identity disclosure in electronic markets. Information Systems
Research, 19(3), 291–313.
Gambetti, A., & Han, Q. (2023). Dissecting AI-Generated Fake Reviews: Detection and Analysis
of GPT-Based Restaurant Reviews on Social Media.
Gan, Q., Ferns, B. H., Yu, Y., & Jin, L. (2017). A Text Mining and Multidimensional Sentiment
Analysis of Online Restaurant Reviews. Journal of Quality Assurance in Hospitality &
Tourism, 18(4), 465–492. https://doi.org/10.1080/1528008X.2016.1250243
Garcia, L. (2019, January 29). Deception on Amazon—An NLP exploration—Part 1. Medium.
https://medium.com/@lievgarcia/deception-on-amazon-c1e30d977cfd
Ghose, A., & Ipeirotis, P. G. (2010). Estimating the helpfulness and economic impact of product
reviews: Mining text and reviewer characteristics. IEEE Transactions on Knowledge and
Data Engineering, 23(10), 1498–1512.
50
Gupta, P., Gandhi, S., & Chakravarthi, B. R. (2021). Leveraging Transfer learning techniques-
BERT, RoBERTa, ALBERT and DistilBERT for Fake Review Detection. Forum for
Information Retrieval Evaluation, 75–82. https://doi.org/10.1145/3503162.3503169
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach
for imbalanced learning. 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), 1322–1328.
https://doi.org/10.1109/IJCNN.2008.4633969
Hameed, W., Allami, R., & Ali, Y. (2023). Fake Review Detection Using Machine Learning.
Revue d’Intelligence Artificielle, 37. https://doi.org/10.18280/ria.370507
Ho, T. K. (1995). Random decision forests. Proceedings of 3rd International Conference on
Document Analysis and Recognition, 1, 278–282.
https://doi.org/10.1109/ICDAR.1995.598994
Hunt, K. M. (2015). Gaming the system: Fake online reviews v. Consumer law. Computer Law &
Security Review, 31(1), 3–25.
Hussain, N., Turab Mirza, H., Hussain, I., Iqbal, F., & Memon, I. (2020). Spam Review Detection
Using the Linguistic and Spammer Behavioral Methods. IEEE Access, 8, 53801–53816.
https://doi.org/10.1109/ACCESS.2020.2979226
Ibafiez-Lissen, L., Gonzalez-Manzano, L., de Fuentes, J. M., & Goyanes, M. (2024). Use of
transfer learning for affordable in-context fake review generation.
Nithya, K., Krishnamoorthi, M., Easwaramoorthy, S. V., Dhivyaa, C R, Yoo, S., & Cho, J. (2024).
Hybrid approach of deep feature extraction using BERT– OPCNN & FIAC with
customized Bi-LSTM for rumor text classification. Alexandria Engineering Journal, 90,
65–75. https://doi.org/10.1016/j.aej.2024.01.056
51
Kasiselvanathan, M., Dhanasekar, J., & Prasad, J. (2022). Classification and Analysis of Fake
Product Review using Ai. 21(1).
Kumar, A., Gopal, R. D., Shankar, R., & Tan, K. H. (2022). Fraudulent review detection model
focusing on emotional expressions and explicit aspects: Investigating the potential of
feature engineering. Decision Support Systems, 155, 113728.
https://doi.org/10.1016/j.dss.2021.113728
Le, Q. V., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents
(arXiv:1405.4053). arXiv. http://arxiv.org/abs/1405.4053
Li, J., Ott, M., Cardie, C., & Hovy, E. (2014). Towards a General Rule for Identifying Deceptive
Opinion Spam. In K. Toutanova & H. Wu (Eds.), Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1566–
1576). Association for Computational Linguistics. https://doi.org/10.3115/v1/P14-1147
Li, S., Zhong, G., Jin, Y., Wu, X., Zhu, P., & Wang, Z. (2023). A Deceptive Reviews Detection
Method Based on Multidimensional Feature Construction and Ensemble Feature Selection.
IEEE Transactions on Computational Social Systems, 10(1), 153–165.
https://doi.org/10.1109/TCSS.2022.3144013
Li, W., Gao, S., Zhou, H., Huang, Z., Zhang, K., & Li, W. (2019). The Automatic Text
Classification Method Based on BERT and Feature Union. 2019 IEEE 25th International
Conference on Parallel and Distributed Systems (ICPADS), 774–777.
https://doi.org/10.1109/ICPADS47876.2019.00114
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &
Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach
(arXiv:1907.11692). arXiv. http://arxiv.org/abs/1907.11692
52
Liu, Y., Zhou, W., & Chen, H. (2017). Efficiently Promoting Product Online Outcome: An
Iterative Rating Attack Utilizing Product and Market Property. IEEE Transactions on
Information Forensics and Security, 12(6), 1444–1457.
https://doi.org/10.1109/TIFS.2017.2668992
Lu, J., Zhan, X., Liu, G., Zhan, X., & Deng, X. (2023). BSTC: A Fake Review Detection Model
Based on a Pre-Trained Language Model and Convolutional Neural Network. Electronics,
12(10), 2165. https://doi.org/10.3390/electronics12102165
Luo, J., Luo, J., Nan, G., & Li, D. (2023). Fake review detection system for online E-commerce
platforms: A supervised general mixed probability approach. Decision Support Systems,
114045. https://doi.org/10.1016/j.dss.2023.114045
Mahinderjit Singh, M., Wern Shen, L., & Anbar, M. (2019). Conceptualizing Distrust Model with
Balance Theory and Multi-Faceted Model for Mitigating False Reviews in Location-Based
Services (LBS). Symmetry, 11(9), 1118.
Mc Laughlin, G. H. (1969). SMOG Grading-a New Readability Formula. Journal of Reading,
12(8), 639–646.
Mir, A. Q., Khan, F. Y., & Chishti, M. A. (2023). Online Fake Review Detection Using Supervised
Machine Learning And BERT Model (arXiv:2301.03225). arXiv.
http://arxiv.org/abs/2301.03225
Mridha, M. F., Keya, A. J., Hamid, Md. A., Monowar, M. M., & Rahman, Md. S. (2021). A
Comprehensive Review on Fake News Detection With Deep Learning. IEEE Access, 9,
156151–156170. https://doi.org/10.1109/ACCESS.2021.3129329
Muliono, Y., Gaol, F. L., Soewito, B., & Warnars, H. L. H. S. (2022). Hoax Classification in
Imbalanced Datasets Based on Indonesian News Title using RoBERTa. 2022 3rd
53
International Conference on Artificial Intelligence and Data Sciences (AiDAS), 264–268.
https://doi.org/10.1109/AiDAS56890.2022.9918747
Munzel, A. (2016). Assisting consumers in detecting fake reviews: The role of identity information
disclosure and consensus. Journal of Retailing and Consumer Services, 32, 96–108.
https://doi.org/10.1016/j.jretconser.2016.06.002
Ott, M., Cardie, C., & Hancock, J. (2012). Estimating the prevalence of deception in online review
communities. In Proceedings of the 21st international conference on World Wide Web (pp.
201–210). Association for Computing Machinery.
https://doi.org/10.1145/2187836.2187864
Ott, M., Cardie, C., & Hancock, J. T. (2013). Negative deceptive opinion spam. Proceedings of
the 2013 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 497–501.
Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding Deceptive Opinion Spam by Any
Stretch of the Imagination.
Paget, S. (2023, February 7). Local Consumer Review Survey 2023: Customer Reviews and
Behavior. BrightLocal. https://www.brightlocal.com/research/local-consumer-review-
survey/
Perez-Castro, A., Martínez-Torres, M. R., & Toral, S. L. (2023). Efficiency of automatic text
generators for online review content generation. Technological Forecasting and Social
Change, 189, 122380. https://doi.org/10.1016/j.techfore.2023.122380
Petrescu, M., O’Leary, K., Goldring, D., & Ben Mrad, S. (2018). Incentivized reviews: Promising
the moon for a few stars. Journal of Retailing and Consumer Services, 41, 288–295.
https://doi.org/10.1016/j.jretconser.2017.04.005
54
Poongodi, M., Vijayakumar, V., Rawal, B., Bhardwaj, V., Agarwal, T., Jain, A., Ramanathan, L.,
& Sriram, V. P. (2019). Recommendation model based on trust relations & user credibility.
Journal of Intelligent & Fuzzy Systems, 36(5), 4057–4064. https://doi.org/10.3233/JIFS-
169966
Prati, R. C., Batista, G. E. A. P. A., & Monard, M. C. (2004). Learning with Class Skews and
Small Disjuncts. In A. L. C. Bazzan & S. Labidi (Eds.), Advances in Artificial Intelligence
– SBIA 2004 (Vol. 3171, pp. 296–306). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-540-28645-5_30
Rao, S., Verma, A. K., & Bhatia, T. (2023). Hybrid ensemble framework with self-attention
mechanism for social spam detection on imbalanced data. Expert Systems with Applications,
217, 119594. https://doi.org/10.1016/j.eswa.2023.119594
Rayana, S., & Akoglu, L. (2015). Collective Opinion Spam Detection: Bridging Review Networks
and Metadata. Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 985–994.
https://doi.org/10.1145/2783258.2783370
Raza, A. (2021). COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR
FAKE REVIEW DETECTION. 13.
Refaeli, D., & Hajek, P. (2021). Detecting Fake Online Reviews using Fine-tuned BERT. 2021
5th International Conference on E-Business and Internet, 76–80.
https://doi.org/10.1145/3497701.3497714
Salminen, J., Kandpal, C., Kamel, A. M., Jung, S., & Jansen, B. J. (2022). Creating and detecting
fake reviews of online products. Journal of Retailing and Consumer Services, 64, 102771.
https://doi.org/10.1016/j.jretconser.2021.102771
55
Budhi, G. S., Chiong, R., Wang, Z., & Dhakal, S. (2021). Using a hybrid content-based and
behaviour-based featuring approach in a parallel environment to detect fake reviews.
Electronic Commerce Research and Applications, 47, 101048.
https://doi.org/10.1016/j.elerap.2021.101048
Saxena, B., Goyal, S., Kumari, A., & Agarwal, A. (2022). Boosting Accuracy of Fake Review
Prediction Using Synthetic Minority Oversampling Technique. 2022 International
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), 156–161.
https://doi.org/10.1109/ICCCIS56430.2022.10037717
Shan, G., Zhou, L., & Zhang, D. (2021). From conflicts and confusion to doubts: Examining
review inconsistency for fake review detection. Decision Support Systems, 144, 113513.
https://doi.org/10.1016/j.dss.2021.113513
Sharma, A. (2020). Impact of Online Reviews on Customer Perception and Buying Behavior.
Supremo Amicus, 21, 657.
Shetty, S. C. (2019). Learning to detect fake online reviews using readability tests and text
analytics.
Singhal, R., & Kashef, R. (2024). A Weighted Stacking Ensemble Model With Sampling for Fake
Reviews Detection. IEEE Transactions on Computational Social Systems, 11(2), 2578–
2594. https://doi.org/10.1109/TCSS.2023.3268548
Sivaramakrishnan, N., & Subramaniyaswamy, V. (2016). Recommendation system with
demographic attributes for fake review identification. Research Journal of Pharmaceutical
Biological and Chemical Sciences, 7(6), 891–899.
56
Smith, K. T. (2011). Digital marketing strategies that Millennials find appealing, motivating, or
just annoying. Journal of Strategic Marketing, 19(6), 489–499.
https://doi.org/10.1080/0965254X.2011.581383
Song, W., Park, S., & Ryu, D. (2017). Information quality of online reviews in the presence of
potentially fake reviews. Korean Economic Review, 33(1), 5–34.
Vidanagama, D. U., Silva, T. P., & Karunananda, A. S. (2020). An Approach to Detect Fake
Reviews based on Logistic Regression using Review-Centric Features. Artificial
Intelligence Review, 53(2), 1323–1352. https://doi.org/10.1007/s10462-019-09697-5
Wang, N., Yang, J., Kong, X., & Gao, Y. (2022). A fake review identification framework
considering the suspicion degree of reviews with time burst characteristics. Expert Systems
with Applications, 190, 116207. https://doi.org/10.1016/j.eswa.2021.116207
Wang, Z., Huang, Z., & Gao, J. (2020). Chinese Text Classification Method Based on BERT Word
Embedding. Proceedings of the 2020 5th International Conference on Mathematics and
Artificial Intelligence, 66–71. https://doi.org/10.1145/3395260.3395273
Wu, Y., Ngai, E. W. T., Wu, P., & Wu, C. (2020). Fake online reviews: Literature review, synthesis,
and directions for future research. Decision Support Systems, 132, 113280.
https://doi.org/10.1016/j.dss.2020.113280
Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32–35.
Zhang, W., Du, Y., Yoshida, T., & Wang, Q. (2018). DRI-RCNN: An approach to deceptive
review identification using recurrent convolutional neural network. Information
Processing & Management, 54(4), 576–592. https://doi.org/10.1016/j.ipm.2018.03.007
Zhao, Y., Yang, S., Narayan, V., & Zhao, Y. (2013). Modeling consumer learning from online
product reviews. Marketing Science, 32(1), 153–169.
57
Zhou, H. (2022). Research of Text Classification Based on TF-IDF and CNN-LSTM. Journal of
Physics: Conference Series, 2171(1), 012021. https://doi.org/10.1088/1742-
6596/2171/1/012021
Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of
product and consumer characteristics. Journal of Marketing, 74(2), 133–148.
Zhuang, M., Cui, G., & Peng, L. (2018). Manufactured opinions: The effect of manipulating online
product reviews. Journal of Business Research, 87, 24–35.
https://doi.org/10.1016/j.jbusres.2018.02.016 |