參考文獻 |
Baldi, P., Sadowski, P. and Whiteson, D. (2014) ‘Searching for Exotic Particles in High-Energy Physics with Deep Learning’, Nature Communications, 5(1), p. 4308. Available at: https://doi.org/10.1038/ncomms5308.
Barbieri, F., Anke, L.E. and Camacho-Collados, J. (2021) ‘XLM-T: Multilingual Language Models in Twitter for Sentiment Analysis and Beyond’. Available at: https://doi.org/10.48550/ARXIV.2104.12250.
Busso, C. et al. (2008) ‘IEMOCAP: interactive emotional dyadic motion capture database’, Language Resources and Evaluation, 42(4), pp. 335–359. Available at: https://doi.org/10.1007/s10579-008-9076-6.
Chudasama, V. et al. (2022) ‘M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation’, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA: IEEE, pp. 4651–4660. Available at: https://doi.org/10.1109/CVPRW56347.2022.00511.
Ciolino, M., Noever, D. and Kalin, J. (2022) ‘Back Translation Survey for Improving Text Augmentation’. arXiv. Available at: http://arxiv.org/abs/2102.09708 (Accessed: 3 November 2023).
Devlin, J. et al. (2019) ‘BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding’, in. NAACL-HLT (1). Available at: https://openreview.net/forum?id=SkZmKmWOWH (Accessed: 7 January 2022).
Eichenberg, C. et al. (2022) ‘MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning’. arXiv. Available at: http://arxiv.org/abs/2112.05253 (Accessed: 1 November 2023).
Farkhod, A. et al. (2021) ‘LDA-Based Topic Modeling Sentiment Analysis Using Topic/Document/Sentence (TDS) Model’, Applied Sciences, 11(23), p. 11091. Available at: https://doi.org/10.3390/app112311091.
Gandhi, A. et al. (2023) ‘Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions’, Information Fusion, 91, pp. 424–444. Available at: https://doi.org/10.1016/j.inffus.2022.09.025.
Gandhi, A., Adhvaryu, K. and Khanduja, V. (2021) ‘Multimodal Sentiment Analysis: Review, Application Domains and Future Directions’, in 2021 IEEE Pune Section International Conference (PuneCon). 2021 IEEE Pune Section International Conference (PuneCon), Pune, India: IEEE, pp. 1–5. Available at: https://doi.org/10.1109/PuneCon52575.2021.9686504.
Geng, X. et al. (2022) ‘Multimodal Masked Autoencoders Learn Transferable Representations’. arXiv. Available at: http://arxiv.org/abs/2205.14204 (Accessed: 10 May 2024).
Ghosal, D. et al. (2019) ‘DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation’. arXiv. Available at: http://arxiv.org/abs/1908.11540 (Accessed: 24 February 2024).
Goel, R. et al. (2021) ‘Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation’, in 2021 9th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). 2021 9th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Nara, Japan: IEEE, pp. 1–6. Available at: https://doi.org/10.1109/ACIIW52867.2021.9666315.
Guan, W. et al. (2021) ‘Multimodal Compatibility Modeling via Exploring the Consistent and Complementary Correlations’, in Proceedings of the 29th ACM International Conference on Multimedia. MM ’21: ACM Multimedia Conference, Virtual Event China: ACM, pp. 2299–2307. Available at: https://doi.org/10.1145/3474085.3475392.
Hao, X. et al. (2023) ‘MixGen: A New Multi-Modal Data Augmentation’. arXiv. Available at: http://arxiv.org/abs/2206.08358 (Accessed: 1 November 2023).
Hazarika, D. et al. (2022) ‘Analyzing Modality Robustness in Multimodal Sentiment Analysis’. Available at: https://doi.org/10.48550/ARXIV.2205.15465.
He, K. et al. (2021) ‘Masked Autoencoders Are Scalable Vision Learners’. arXiv. Available at: http://arxiv.org/abs/2111.06377 (Accessed: 10 May 2024).
Houlsby, N. et al. (2019) ‘Parameter-Efficient Transfer Learning for NLP’. arXiv. Available at: http://arxiv.org/abs/1902.00751 (Accessed: 28 June 2024).
Huang, C. et al. (2023) ‘MAST: Masked Augmentation Subspace Training for Generalizable Self-Supervised Priors’. Available at: https://doi.org/10.48550/ARXIV.2303.03679.
Huang, J. et al. (2023) ‘Multimodal Sentiment Analysis in Realistic Environments Based on Cross-Modal Hierarchical Fusion Network’, Electronics, 12(16), p. 3504. Available at: https://doi.org/10.3390/electronics12163504.
Hwang, Y. and Kim, J.-H. (2023) ‘Self-Supervised Unimodal Label Generation Strategy Using Recalibrated Modality Representations for Multimodal Sentiment Analysis’, in Findings of the Association for Computational Linguistics: EACL 2023. Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, Croatia: Association for Computational Linguistics, pp. 35–46. Available at: https://doi.org/10.18653/v1/2023.findings-eacl.2.
Jangra, A. et al. (2021) ‘Multi-Modal Supplementary-Complementary Summarization using Multi-Objective Optimization’, in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’21: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event Canada: ACM, pp. 818–828. Available at: https://doi.org/10.1145/3404835.3462877.
Kang, Y. and Cho, Y.-S. (2024) ‘Improving Contrastive Learning in Emotion Recognition in Conversation via Data Augmentation and Decoupled Neutral Emotion’, in Y. Graham and M. Purver (eds) Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). St. Julian’s, Malta: Association for Computational Linguistics, pp. 2194–2208. Available at: https://aclanthology.org/2024.eacl-long.134.
Kenyon-Dean, K. et al. (2018) ‘Sentiment Analysis: It’s Complicated!’, in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana: Association for Computational Linguistics, pp. 1886–1895. Available at: https://doi.org/10.18653/v1/N18-1171.
Kipf, T.N. and Welling, M. (2017) ‘Semi-Supervised Classification with Graph Convolutional Networks’. arXiv. Available at: http://arxiv.org/abs/1609.02907 (Accessed: 24 February 2024).
Lai, S. et al. (2023) ‘Multimodal Sentiment Analysis: A Survey’. Available at: https://doi.org/10.48550/ARXIV.2305.07611.
Li, Z. et al. (2022) ‘Multimodal Sentiment Analysis Based on Interactive Transformer and Soft Mapping’, Wireless Communications and Mobile Computing. Edited by M. Elhoseny, 2022, pp. 1–12. Available at: https://doi.org/10.1155/2022/6243347.
Liu, K. et al. (2018) ‘Learn to Combine Modalities in Multimodal Deep Learning’. arXiv. Available at: http://arxiv.org/abs/1805.11730 (Accessed: 20 May 2024).
Liu, Z. et al. (2023) ‘Learning Multimodal Data Augmentation in Feature Space’. arXiv. Available at: http://arxiv.org/abs/2212.14453 (Accessed: 1 November 2023).
Majumder, N. et al. (2019) ‘DialogueRNN: An Attentive RNN for Emotion Detection in Conversations’. arXiv. Available at: http://arxiv.org/abs/1811.00405 (Accessed: 16 February 2024).
Mertes, S. et al. (2020) ‘An Evolutionary-based Generative Approach for Audio Data Augmentation’, in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP). 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland: IEEE, pp. 1–6. Available at: https://doi.org/10.1109/MMSP48831.2020.9287156.
Mieleszczenko-Kowszewicz, W. et al. (2022) ‘Tell Me How You Feel: Designing Emotion-Aware Voicebots to Ease Pandemic Anxiety In Aging Citizens’. arXiv. Available at: http://arxiv.org/abs/2207.10828 (Accessed: 6 February 2024).
Park, D.S. et al. (2019) ‘SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition’, in Interspeech 2019, pp. 2613–2617. Available at: https://doi.org/10.21437/Interspeech.2019-2680.
Poria, S. et al. (2017) ‘Context-Dependent Sentiment Analysis in User-Generated Videos’, in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Canada: Association for Computational Linguistics, pp. 873–883. Available at: https://doi.org/10.18653/v1/P17-1081.
Poria, S., Majumder, N., et al. (2019) ‘Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances’. arXiv. Available at: http://arxiv.org/abs/1905.02947 (Accessed: 6 February 2024).
Poria, S., Hazarika, D., et al. (2019) ‘MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations’. arXiv. Available at: http://arxiv.org/abs/1810.02508 (Accessed: 23 February 2024).
Shen, W. et al. (2021) ‘Directed Acyclic Graph Network for Conversational Emotion Recognition’, in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online: Association for Computational Linguistics, pp. 1551–1560. Available at: https://doi.org/10.18653/v1/2021.acl-long.123.
Shi, T. and Huang, S.-L. (2023) ‘MultiEMO: An Attention-Based Correlation-Aware Multimodal Fusion Framework for Emotion Recognition in Conversations’, in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada: Association for Computational Linguistics, pp. 14752–14766. Available at: https://doi.org/10.18653/v1/2023.acl-long.824.
Singh, K.K. and Lee, Y.J. (2017) ‘Hide-and-Seek: Forcing a Network to be Meticulous for Weakly-Supervised Object and Action Localization’, in 2017 IEEE International Conference on Computer Vision (ICCV). 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE, pp. 3544–3553. Available at: https://doi.org/10.1109/ICCV.2017.381.
Singh, U., Abhishek, K. and Azad, H.K. (2024) ‘A Survey of Cutting-edge Multimodal Sentiment Analysis’, ACM Computing Surveys, 56(9), pp. 1–38. Available at: https://doi.org/10.1145/3652149.
Sujana, Y. and Kao, H.-Y. (2023) ‘LiDA: Language-Independent Data Augmentation for Text Classification’, IEEE Access, 11, pp. 10894–10901. Available at: https://doi.org/10.1109/ACCESS.2023.3234019.
Tran, H. et al. (2023) ‘Emotion-Aware Music Recommendation’, Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), pp. 16087–16095. Available at: https://doi.org/10.1609/aaai.v37i13.26911.
Vaswani, A. et al. (2017) ‘Attention is All you Need’, in Advances in Neural Information Processing Systems. Curran Associates, Inc. Available at: https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (Accessed: 4 December 2022).
Wang, H. et al. (2017) ‘Select-additive learning: Improving generalization in multimodal sentiment analysis’, in 2017 IEEE International Conference on Multimedia and Expo (ICME). 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, Hong Kong: IEEE, pp. 949–954. Available at: https://doi.org/10.1109/ICME.2017.8019301.
Wang, J. et al. (2016) ‘Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model’, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Berlin, Germany: Association for Computational Linguistics, pp. 225–230. Available at: https://doi.org/10.18653/v1/P16-2037.
Wang, S., Ma, Y. and Ding, Y. (2023) ‘Exploring Complementary Features in Multi-Modal Speech Emotion Recognition’, in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE, pp. 1–5. Available at: https://doi.org/10.1109/ICASSP49357.2023.10096709.
Wei, J. and Zou, K. (2019) ‘EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks’. arXiv. Available at: http://arxiv.org/abs/1901.11196 (Accessed: 3 November 2023).
Wei, S. et al. (2020) ‘A Comparison on Data Augmentation Methods Based on Deep Learning for Audio Classification’, Journal of Physics: Conference Series, 1453(1), p. 012085. Available at: https://doi.org/10.1088/1742-6596/1453/1/012085.
Wu, Z. et al. (2019) ‘Data Augmentation Using Variational Autoencoder for Embedding Based Speaker Verification’, in Interspeech 2019. Interspeech 2019, ISCA, pp. 1163–1167. Available at: https://doi.org/10.21437/Interspeech.2019-2248.
Xu, H. et al. (2020) ‘DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis’, in Findings of the Association for Computational Linguistics: EMNLP 2020. Findings of the Association for Computational Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, pp. 1725–1731. Available at: https://doi.org/10.18653/v1/2020.findings-emnlp.156.
Xu, M. et al. (2023) ‘A Comprehensive Survey of Image Augmentation Techniques for Deep Learning’, Pattern Recognition, 137, p. 109347. Available at: https://doi.org/10.1016/j.patcog.2023.109347.
Xu, N. et al. (2021) ‘MDA: Multimodal Data Augmentation Framework for Boosting Performance on Sentiment/Emotion Classification Tasks’, IEEE Intelligent Systems, 36(6), pp. 3–12. Available at: https://doi.org/10.1109/MIS.2020.3026715.
Yang, J. et al. (2023) ‘ConFEDE: Contrastive Feature Decomposition for Multimodal Sentiment Analysis’, in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada: Association for Computational Linguistics, pp. 7617–7630. Available at: https://doi.org/10.18653/v1/2023.acl-long.421.
Zaffar, I. et al. (2022) ‘Embedding Space Augmentation for Weakly Supervised Learning in Whole-Slide Images’. arXiv. Available at: http://arxiv.org/abs/2210.17013 (Accessed: 26 June 2024).
Zhang, H. et al. (2018) ‘mixup: Beyond Empirical Risk Minimization’. arXiv. Available at: http://arxiv.org/abs/1710.09412 (Accessed: 3 November 2023).
Zhao, X. et al. (2023) ‘TMMDA: A New Token Mixup Multimodal Data Augmentation for Multimodal Sentiment Analysis’, in Proceedings of the ACM Web Conference 2023. WWW ’23: The ACM Web Conference 2023, Austin TX USA: ACM, pp. 1714–1722. Available at: https://doi.org/10.1145/3543507.3583406.
Zheng, J. et al. (2022) ‘Multimodal Representations Learning Based on Mutual Information Maximization and Minimization and Identity Embedding for Multimodal Sentiment Analysis’. Available at: https://doi.org/10.48550/ARXIV.2201.03969. |