博碩士論文 111521087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.142.131.51
姓名 王子明(Zi-Ming Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於四分之一模基板合成波導四通帶雙工器和半模六邊形基板合成波導雙工器
(Quarter-Mode SIW Quad-Channel Diplexer and Half-Mode Hexagonal SIW Diplexer)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用基板合成波導技術實現兩個不同的雙工器,第一個電路是中心頻率為2.4/3/4.2/5 GHz的四通帶雙工器,透過兩個基板合成波導雙頻帶帶通濾波器並用T型微帶線接面組成的。首先,設計一中心頻率為3 GHz和5 GHz的雙頻帶帶通濾波器,其採用三角形四分之一模基板合成波導共振器並在上層金屬蝕刻微擾槽孔去設計,所使用的模態是TE101¬和TE202。其中,這些微擾槽孔可以控制TE202模態,同時不影響TE101模態,將原本共振頻率為6 GHz的TE202模態調整至5 GHz。另一個中心頻為2.4 GHz和4.2 GHz是採用四分之一模六邊形基板合成波導共振器設計,使用的模態為TE101和TE103,不使用前述三角形四分之一模共振器的方式設計是因為其高階模態會影響5 GHz的通帶。當兩個二階雙頻帶帶通濾波器皆設計完成之後,再用T型微帶線接面組合起來,經過微調和最佳化設計出四分之一模基板合成波導四通帶雙工器。第二個電路是透過半模六邊形基板合成波導作為第一級共振器,並使用TE102和Mode5的模態,中心頻設計在3 GHz和4 GHz的二階雙工器,而第二級共振器皆是使用四分之一模基板合成波導共振器以減少電路面積,透過六邊形共振器有別於傳統矩形共振器的電磁場分布,設計出具有良好隔離度且電路面積較小的雙工器。
摘要(英) This thesis introduces the application of substrate integrated waveguide (SIW) technology to implement two distinct diplexers. The first circuit is a quad-channel diplexer with center frequencies at 2.4/3/4.2/5 GHz. It consists of two QMSIW dual-band bandpass filters interconnected with a microstrip T-junction. Initially, dual-band bandpass filters are designed. A triangular QMSIW cavity with a centered 45-degree slot perturbation, which has center frequencies at 3 GHz and 5 GHz, is utilized for the design of the dual-band bandpass filter. The slot perturbation can control the resonance frequencies of TE202 mode without impacting the resonance frequencies of TE101 mode, allowing for the adjustment of TE202 resonance frequencies from the original 6 GHz to 5 GHz. The other dual-band bandpass filter with center frequencies at 2.4 GHz and 4.2 GHz is implemented using a quarter-mode hexagonal SIW cavity, utilizing TE101 and TE103 modes. The reason for not using the triangular quarter-mode cavity for the 2.4/4.2 GHz dual-band bandpass filter is due to the interference of its higher-order mode with the passband at 5 GHz. Once both dual-band bandpass filters are designed, they are combined using a microstrip T-junction and further optimized to achieve a QMSIW quad-channel diplexer. The second circuit involves the utilization of a half-mode hexagonal SIW cavity as the first-order resonant cavity for designing second-order diplexers. The resonance frequencies of TE102 and mode 5 are at 3 GHz and 4 GHz, respectively. Quarter-mode SIW resonators are employed in all second-order resonant cavities to minimize circuit area. The distinctive electrical and magnetic field distributions of hexagonal cavities, compared to conventional rectangular ones, are exploited to design diplexers with superior isolation performance.
關鍵字(中) ★ 基板合成波導
★ 濾波器
★ 雙工器
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 濾波器簡介 1
1-2 研究動機 4
1-3 多工器文獻回顧 5
1-4 章節概述 6
第二章 基板合成波導概述 7
2-1 基板合成波導共振腔 7
2-2 半模和四分之一模基板合成波導共振腔 10
第三章 四分之一模基板合成波導之四通帶雙工器 13
3-1 多工器架構與配置 13
3-1-1 四通帶雙工器電路配置與規格 14
3-2 三角形四分之一模共振器之微擾分析 15
3-2-1 微擾槽孔對頻率的影響 17
3-3 三角形四分之一模共振器之雙頻帶帶通濾波器設計 19
3-4 三角形四分之一模共振器之問題討論 26
3-5 六邊形四分之一模共振器之雙頻帶帶通濾波器設計 31
3-6 四通帶雙工器設計、模擬與量測 36
第四章 半模六邊形基板合成波導雙工器 43
4-1 六邊形基板合成波導共振器 43
4-2 半模六邊形基板合成波導 46
4-3 半模六邊形基板合成波導雙工器設計 50
4-4 半模六邊形基板合成波導雙工器模擬與量測 53
第五章 結論 57
參考文獻 58
參考文獻 [1] X.-P. Chen and K. Wu, "Substrate integrated waveguide filter: basic design rules and fundamental structure features", IEEE Microw. Mag., vol. 15, no. 5, pp. 108-116, Jul./Aug. 2014.
[2] P. Chu et al., "Dual-mode substrate integrated waveguide filter with flexible response", IEEE Transactions on Microwave Theory and Techniques., vol. 65, no. 3, pp. 824-830, Mar. 2017.
[3] K. Song, Y. Zhou, Y. Chen, A. Mohamed Iman, S. Richard Patience and Y. Fan, "High-isolation diplexer with high frequency selectivity using substrate integrate waveguide dual-mode resonator," IEEE Access, vol. 7, pp. 116676-116683, 2019.
[4] S. Sirci, J. D. Martínez, J. Vague and V. E. Boria, "Substrate integrated waveguide diplexer based on circular triplet combline filters," IEEE Microwave and Wireless Components Letters, vol. 25, no. 7, pp. 430-432, July 2015.
[5] K. Zhou, C. X. Zhou, and W. Wu, " Compact SIW diplexer with flexibly allocated bandwidths using common dual-mode cavities," IEEE Microwave and Wireless Components Letters, vol. 28, no. 4, pp. 317-319, 2018.
[6] D. Ma, K. Zhou, T. Huang, Y. Wang and W. Wu, "A novel miniaturized SIW diplexer based on orthogonal dual-mode resonator," IEEE MTT-S Int. Microw. Symp., pp.1-3, 2022.
[7] D. Ma, K. Zhou, H. Xie, T. Huang and W. Wu, "Compact or wide-stopband SIW diplexers with high intrinsic isolations based on orthogonal dual modes," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 1, pp. 71-75, Jan. 2023
[8] H. -W. Xie, K. Zhou, C. -X. Zhou and W. Wu, "Compact SIW diplexers and dual-band bandpass filter with wide-stopband performances," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2933-2937, Dec. 2020.
[9] K. Zhou and K. Wu, "Miniaturized diplexers with large frequency ratios based on common half-mode dual-mode SIW junction-cavities," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 12, pp. 5343-5350, Dec. 2021.
[10] K. Zhou and K. Wu, "Miniaturized diplexer using dual half-mode SIW cavity for 5G sub-6 GHz communications," IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, pp. 1821–1822, Jul. 2020.
[11] Y. Dong and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design," in IEEE Microwave and Wireless Components Letters, vol. 21, no. 1, pp. 10-12, Jan. 2011.
[12] K. Zhou and K. Wu, "Multichannel substrate integrated waveguide diplexers based on orthogonal dual modes and split-type multiband responses," in IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 356-366, Jan. 2022.
[13] K. Zhou and K. Wu, "Multichannel substrate integrated waveguide diplexer made of dual-mode cavities and split-type dual-band response," 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021.
[14] A. Iqbal, J. J. Tiang, C. K. Lee and B. M. Lee, "Tunable substrate integrated waveguide diplexer with high isolation and wide stopband," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 7, pp. 456-458, July 2019.
[15] A. Sieganschin, B. Tegowski, T. Jaschke and A. F. Jacob, "Compact diplexers with folded circular SIW cavity filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 111-118, Jan. 2021.
[16] F. Cheng, C. Gu, B. Zhang, Y. Yang and K. Huang, "High isolation substrate integrated waveguide diplexer with flexible transmission zeros," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 11, pp. 1029-1032, Nov. 2020.
[17] Z. L. Su, B. W. Xu, S. Y. Zheng, H. W. Liu and Y. L. Long, "High-isolation and wide-stopband SIW diplexer using mixed electric and magnetic coupling," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 32-36, Jan. 2020.
[18] F. Cheng, X. Lin, K. Song, Y. Jiang and Y. Fan, "Compact diplexer with high isolation using the dual-mode substrate integrated waveguide resonator," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 459-461, Sept. 2013.
[19] H. -W. Wu, S. -H. Huang and Y. -F. Chen, "Design of new quad-channel diplexer with compact circuit size," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 5, pp. 240-242, May 2013.
[20] Q. Shao, F. -C. Chen, J. -F. Qian, J. -M. Qiu and Q. -X. Chu, "Novel matching network and its application to quad-channel diplexers," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 452-454, May 2017.
[21] C. -F. Chen, Cheng-Yu Lin, Bo-Hao Tseng and Sheng-Fa Chang, "A compact microstrip quad-channel diplexer with high-selectivity and high-isolation performances," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 2014.
[22] Di Luo, Fu-Chang Chen, Jie-Ming Qiu and Qing-Xin Chu, "Design of quad-channel diplexer using short stub loaded resonator," 2015 IEEE International Wireless Symposium (IWS 2015), Shenzhen, China, 2015.
[23] P. -L. Chi, H. -T. Shih and T. Yang, "5G millimeter-wave substrate-integrated waveguide quad-channel diplexer with high in-band and wideband isolation," in IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 650-653, June 2021.
[24] Feng Xu and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 66-73, Jan. 2005.
[25] D. Deslandes and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2516-2526, June 2006.
[26] D. Deslandes and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 2, pp. 593-596, Feb. 2003.
[27] D. M. Pozar, Microwave engineering. Fourth edition. Hoboken, NJ : Wiley, 2012.
[28] Q. Lai, C. Fumeaux, W. Hong and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1996-2004, Aug. 2009.
[29] K. Zhou, C. -X. Zhou and W. Wu, "Dual-mode characteristics of half-mode SIW rectangular cavity and applications to dual-band filters with widely separated passbands," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 11, pp. 4820-4829, Nov. 2018.
[30] L. Xia, H. Xie, B. Wu, J. Chen, S. Sun and X. Pang, "A miniaturized SIW triplexer based on a triple-mode resonator with slot perturbation," 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, China, 2019.
[31] H. Xie, K. Zhou, C. Zhou and W. Wu, "Compact substrate-integrated waveguide triplexer based on a common triple-mode cavity," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, USA, 2018.
[32] M. Adhikary, P. Chongder and A. Biswas, "Planar miniaturized substrate integrated waveguide triplexer with radial symmetry," 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, 2016.
[33] R. Mongia, I. Bahl, P. Bhartia, and J.-S. Hong, RF and microwave coupled-line circuits. Artech House, 2nd ed., 2007.
[34] Tang, H.J., Hong, W.: ‘Substrate Integrated Waveguide (SIW) filter with hexagonal resonator’, J. Electromagn. Waves Appl., 2012.
[35] P. Chongder, K.V. Srivastava, and A. Biswas, “Realisation of controllable transmission zeros by perturbation technique for designing dual-mode filter using substrate integrated hexagonal cavity,” IET Microwaves, Antennas Propagation, vol. 8, no. 6, pp. 451-457, 2014.
[36] P. Chongder and A. Biswas, “Flexible design procedure for realisation of dual-mode substrate integrated hexagonal-cavity-based diplexer,” IET Microwaves, Antennas Propagation., vol. 11, no. 14, pp. 2083–2090, 2017.
[37] D. Deslandes and K. Wu, "Integrated transition of coplanar to rectangular waveguides," IEEE MTT-S Int. Microw. Symp. Digest, vol. 2, pp. 619-622, 2001.
指導教授 凃文化 審核日期 2024-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明