參考文獻 |
[1] “Mobile network subscriptions worldwide 2028,” Statista. Accessed: Mar. 12, 2024. [Online]. Available: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
[2] “Smartphone market shares by vendor 2009-2023,” Statista. Accessed: Mar. 12, 2024. [Online]. Available: https://www.statista.com/statistics/271496/global-market-share-held-by-smartphone-vendors-since-4th-quarter-2009/
[3] “How to detect and avoid malware on Android devices,” usa.kaspersky.com. Accessed: Mar. 12, 2024. [Online]. Available: https://usa.kaspersky.com/resource-center/preemptive-safety/avoid-android-malware
[4] F. Deldar and M. Abadi, “Deep Learning for Zero-day Malware Detection and Classification: A Survey,” ACM Comput. Surv., vol. 56, no. 2, Sep. 2023, doi: 10.1145/3605775.
[5] G. He, B. Xu, L. Zhang, and H. Zhu, “On-Device Detection of Repackaged Android Malware via Traffic Clustering,” Security and Communication Networks, vol. 2020, p. 8630748, May 2020, doi: 10.1155/2020/8630748.
[6] M. Fan et al., “Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 8, pp. 1890–1905, 2018, doi: 10.1109/TIFS.2018.2806891.
[7] “Most frequent trackers - Google Play,” exodus. Accessed: Jun. 26, 2024. [Online]. Available: https://reports.exodus-privacy.eu.org/en/trackers/stats/
[8] X. Zhan et al., “Research on Third-Party Libraries in Android Apps: A Taxonomy and Systematic Literature Review,” IEEE Transactions on Software Engineering, vol. 48, no. 10, pp. 4181–4213, Oct. 2022, doi: 10.1109/TSE.2021.3114381.
[9] “SpinOk 惡意軟體 - Check Point 軟體,” Check Point Software. Accessed: Jun. 26, 2024. [Online]. Available: https://www.checkpoint.com/tw/cyber-hub/threat-prevention/what-is-malware/spinok-malware/
[10] S. Chen, B. Lang, H. Liu, Y. Chen, and Y. Song, “Android malware detection method based on graph attention networks and deep fusion of multimodal features,” Expert Systems with Applications, vol. 237, p. 121617, Mar. 2024, doi: 10.1016/j.eswa.2023.121617.
[11] H. Wu, N. Luktarhan, G. Tian, and Y. Song, “An Android Malware Detection Approach to Enhance Node Feature Differences in a Function Call Graph Based on GCNs,” Sensors, vol. 23, no. 10, 2023, doi: 10.3390/s23104729.
[12] Z. Liu, R. Wang, N. Japkowicz, H. M. Gomes, B. Peng, and W. Zhang, “SeGDroid: An Android malware detection method based on sensitive function call graph learning,” Expert Systems with Applications, vol. 235, p. 121125, 2024, doi: https://doi.org/10.1016/j.eswa.2023.121125.
[13] S. Shi, S. Tian, B. Wang, T. Zhou, and G. Chen, “SFCGDroid: android malware detection based on sensitive function call graph,” International Journal of Information Security, vol. 22, no. 5, pp. 1115–1124, Oct. 2023, doi: 10.1007/s10207-023-00679-x.
[14] Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, and Z. Qin, “MsDroid: Identifying Malicious Snippets for Android Malware Detection,” IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 3, pp. 2025–2039, Jun. 2023, doi: 10.1109/TDSC.2022.3168285.
[15] L. Gong et al., “Systematically Landing Machine Learning onto Market-Scale Mobile Malware Detection,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 7, pp. 1615–1628, 2021, doi: 10.1109/TPDS.2020.3046092.
[16] F. Ou and J. Xu, “S3Feature: A static sensitive subgraph-based feature for android malware detection,” Computers & Security, vol. 112, p. 102513, Jan. 2022, doi: 10.1016/j.cose.2021.102513.
[17] H.-H. Yang, “A Research of Android Anti-Obfuscated Malware Detection Combined with Function Call Graph Semantic Feature and Domain Adaptation,” presented at the Cryptology and Information Security Conference 2023, 2023.
[18] X. Zhan et al., “A Systematic Assessment on Android Third-Party Library Detection Tools,” IEEE Transactions on Software Engineering, vol. 48, no. 11, pp. 4249–4273, Jan. 2022, doi: 10.1109/TSE.2021.3115506.
[19] H.-Y. Wang, Y. Guo, Z.-A. Ma, and X.-Q. Chen, “Automated Detection and Classification of Third-Party Libraries in Large Scale Android Apps,” Ruan Jian Xue Bao/Journal of Software, vol. 28, pp. 1373–1388, Jun. 2017, doi: 10.13328/j.cnki.jos.005221.
[20] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Generating Explanations for Graph Neural Networks,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
[21] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “LibScan: towards more precise third-party library identification for android applications,” in Proceedings of the 32nd USENIX Conference on Security Symposium, in SEC ’23. USA: USENIX Association, Aug. 2023, pp. 3385–3402.
[22] Y. Yang, X. Du, Z. Yang, and X. Liu, “Android Malware Detection Based on Structural Features of the Function Call Graph,” Electronics, vol. 10, no. 2, Art. no. 2, Jan. 2021, doi: 10.3390/electronics10020186.
[23] N. Peiravian and X. Zhu, “Machine Learning for Android Malware Detection Using Permission and API Calls,” in 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, 2013, pp. 300–305. doi: 10.1109/ICTAI.2013.53.
[24] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A Combination Method for Android Malware Detection Based on Control Flow Graphs and Machine Learning Algorithms,” IEEE Access, vol. 7, pp. 21235–21245, 2019, doi: 10.1109/ACCESS.2019.2896003.
[25] H. Haidros Rahima Manzil and M. Naik S, “DynaMalDroid: Dynamic Analysis-Based Detection Framework for Android Malware Using Machine Learning Techniques,” in 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES), 2022, pp. 1–6. doi: 10.1109/ICKECS56523.2022.10060106.
[26] A. H. Galib and B. M. Mainul Hossain, “A Systematic Review on Hybrid Analysis using Machine Learning for Android Malware Detection,” in 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET), 2019, pp. 1–6. doi: 10.1109/ICIET48527.2019.9290548.
[27] X. Zhan et al., “ATVHunter: Reliable Version Detection of Third-Party Libraries for Vulnerability Identification in Android Applications,” in Proceedings of the 43rd International Conference on Software Engineering, in ICSE ’21. Madrid, Spain: IEEE Press, Nov. 2021, pp. 1695–1707. doi: 10.1109/ICSE43902.2021.00150.
[28] “Developer Program Policy - Play Console Help.” Accessed: Jun. 26, 2024. [Online]. Available: https://support.google.com/googleplay/android-developer/answer/14906471?hl=en
[29] K. Zhao et al., “Demystifying Privacy Policy of Third-Party Libraries in Mobile Apps,” in 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), May 2023, pp. 1583–1595. doi: 10.1109/ICSE48619.2023.00137.
[30] Z. Tan and W. Song, “PTPDroid: Detecting Violated User Privacy Disclosures to Third-Parties of Android Apps,” in 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), May 2023, pp. 473–485. doi: 10.1109/ICSE48619.2023.00050.
[31] S. Chen et al., “Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach,” Computers & Security, vol. 73, pp. 326–344, Mar. 2018, doi: 10.1016/j.cose.2017.11.007.
[32] Y. Zhang et al., “Detecting third-party libraries in Android applications with high precision and recall,” in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Mar. 2018, pp. 141–152. doi: 10.1109/SANER.2018.8330204.
[33] Y. Wang et al., “An Empirical Study of Usages, Updates and Risks of Third-Party Libraries in Java Projects,” in 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep. 2020, pp. 35–45. doi: 10.1109/ICSME46990.2020.00014.
[34] “如何處理應用程式中的 Airpush 安全漏洞 - Google說明.” Accessed: Jun. 26, 2024. [Online]. Available: https://support.google.com/faqs/answer/6376737?hl=zh-Hant
[35] “如何修正有 Vpon SDK 安全性漏洞的應用程式 - Google說明.” Accessed: Jun. 26, 2024. [Online]. Available: https://support.google.com/faqs/answer/7012047?hl=zh-Hant&sjid=8809097796796517924-AP
[36] “Software Composition Analysis (SCA): A Complete Guide.” Accessed: Jun. 26, 2024. [Online]. Available: https://blog.codacy.com/software-composition-analysis-sca
[37] Z. Zhang, W. Diao, C. Hu, S. Guo, C. Zuo, and L. Li, “An empirical study of potentially malicious third-party libraries in Android apps,” in Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, in WiSec ’20. New York, NY, USA: Association for Computing Machinery, Jul. 2020, pp. 144–154. doi: 10.1145/3395351.3399346.
[38] H. Wang, H. Li, and Y. Guo, “Understanding the Evolution of Mobile App Ecosystems: A Longitudinal Measurement Study of Google Play,” in The World Wide Web Conference, in WWW ’19. New York, NY, USA: Association for Computing Machinery, 2019, pp. 1988–1999. doi: 10.1145/3308558.3313611.
[39] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure analysis of mobile in-app advertisements,” in Proceedings of the Fifth ACM Conference on Security and Privacy in Wireless and Mobile Networks, in WISEC ’12. New York, NY, USA: Association for Computing Machinery, 2012, pp. 101–112. doi: 10.1145/2185448.2185464.
[40] “Mobile Advertising in 2024 - Guide To Mobile App Advertising,” adapty. Accessed: Jun. 26, 2024. [Online]. Available: https://adapty.io/blog/mobile-advertising/
[41] T. Liu et al., “MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps,” in Proceedings of The Web Conference 2020, in WWW ’20. New York, NY, USA: Association for Computing Machinery, Apr. 2020, pp. 1715–1726. doi: 10.1145/3366423.3380242.
[42] F. Dong, H. Wang, L. Li, Y. Guo, G. Xu, and S. Zhang, “How do Mobile Apps Violate the Behavioral Policy of Advertisement Libraries?,” in Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications, in HotMobile ’18. New York, NY, USA: Association for Computing Machinery, 2018, pp. 75–80. doi: 10.1145/3177102.3177113.
[43] “Google AdMob - 行動應用程式營利.” Accessed: Jun. 27, 2024. [Online]. Available: https://admob.google.com/intl/zh-TW/home/
[44] F. Dong et al., “FraudDroid: automated ad fraud detection for Android apps,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, in ESEC/FSE 2018. New York, NY, USA: Association for Computing Machinery, 2018, pp. 257–268. doi: 10.1145/3236024.3236045.
[45] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: detecting and characterizing ad fraud in mobile apps,” in Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, in NSDI’14. USA: USENIX Association, 2014, pp. 57–70.
[46] J. Crussell, R. Stevens, and H. Chen, “MAdFraud: Investigating ad fraud in Android applications,” MobiSys 2014 - Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Jun. 2014, doi: 10.1145/2594368.2594391.
[47] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber, “On demystifying the android application framework: re-visiting android permission specification analysis,” in Proceedings of the 25th USENIX Conference on Security Symposium, in SEC’16. USA: USENIX Association, 2016, pp. 1101–1118.
[48] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: analyzing the Android permission specification,” in Proceedings of the 2012 ACM Conference on Computer and Communications Security, in CCS ’12. New York, NY, USA: Association for Computing Machinery, 2012, pp. 217–228. doi: 10.1145/2382196.2382222.
[49] Z. Ding, H. Xu, Y. Guo, L. Yan, L. Cui, and Z. Hao, “Mal-Bert-GCN: Malware Detection by Combining Bert and GCN,” in 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2022, pp. 175–183. doi: 10.1109/TrustCom56396.2022.00034.
[50] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
[51] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word Representations in Vector Space,” Sep. 06, 2013, arXiv: arXiv:1301.3781. doi: 10.48550/arXiv.1301.3781.
[52] L. C. Freeman, “Centrality in social networks conceptual clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, Jan. 1978, doi: 10.1016/0378-8733(78)90021-7.
[53] “Manifest.permission | Android Developers.” Accessed: Mar. 13, 2024. [Online]. Available: https://developer.android.com/reference/android/Manifest.permission
[54] “Android Open Source Project,” GitHub. Accessed: Jun. 27, 2024. [Online]. Available: https://github.com/aosp-mirror
[55] A. Mathew, P. Amudha, and S. Sivakumari, “Deep Learning Techniques: An Overview,” in Advanced Machine Learning Technologies and Applications, A. E. Hassanien, R. Bhatnagar, and A. Darwish, Eds., Singapore: Springer Singapore, 2021, pp. 599–608.
[56] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, 2021, doi: 10.1109/TNNLS.2020.2978386.
[57] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering,” Feb. 05, 2017, arXiv: arXiv:1606.09375. doi: 10.48550/arXiv.1606.09375.
[58] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” Feb. 22, 2017, arXiv: arXiv:1609.02907. doi: 10.48550/arXiv.1609.02907.
[59] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, in NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, pp. 1025–1035.
[60] J. Lee, I. Lee, and J. Kang, “Self-Attention Graph Pooling,” Jun. 13, 2019, arXiv: arXiv:1904.08082. doi: 10.48550/arXiv.1904.08082.
[61] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò, “Towards Sparse Hierarchical Graph Classifiers,” Nov. 03, 2018, arXiv: arXiv:1811.01287. doi: 10.48550/arXiv.1811.01287.
[62] J. Gu, H. Zhu, Z. Han, X. Li, and J. Zhao, “GSEDroid: GNN-based Android malware detection framework using lightweight semantic embedding,” Computers & Security, vol. 140, p. 103807, May 2024, doi: 10.1016/j.cose.2024.103807.
[63] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph Neural Networks?,” Feb. 22, 2019, arXiv: arXiv:1810.00826. doi: 10.48550/arXiv.1810.00826.
[64] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention Networks,” Feb. 04, 2018, arXiv: arXiv:1710.10903. doi: 10.48550/arXiv.1710.10903.
[65] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated Graph Sequence Neural Networks,” Sep. 22, 2017, arXiv: arXiv:1511.05493. doi: 10.48550/arXiv.1511.05493.
[66] O. Vinyals, S. Bengio, and M. Kudlur, “Order Matters: Sequence to sequence for sets,” Feb. 23, 2016, arXiv: arXiv:1511.06391. doi: 10.48550/arXiv.1511.06391.
[67] “GitHub - androguard/androguard: Reverse engineering and pentesting for Android applications.” Accessed: Mar. 12, 2024. [Online]. Available: https://github.com/androguard/androguard
[68] Guo Yan-hui, Wang Dong, Wang Xiao-Xuan, Wang Liu, and Xu Guo-Sheng, “A Generic Explaining & Locating Method for Malware Detection based on Graph Neural Networks,” Journal of Software, vol. 35, no. 8, pp. 0–0.
[69] S. Mahdavifar, A. F. Abdul Kadir, R. Fatemi, D. Alhadidi, and A. A. Ghorbani, “Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning,” in 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2020, pp. 515–522. doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00094.
[70] S. Mahdavifar, D. Alhadidi, and A. Ghorbani, “Effective and Efficient Hybrid Android Malware Classification Using Pseudo-Label Stacked Auto-Encoder,” Journal of Network and Systems Management, vol. 30, Jan. 2022, doi: 10.1007/s10922-021-09634-4.
[71] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting Millions of Android Apps for the Research Community,” in Proceedings of the 13th International Conference on Mining Software Repositories, in MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–471. doi: 10.1145/2901739.2903508.
[72] A. lin, “【Python學習筆記】常見的二元分類評估指標 — 混淆矩陣、ROC 曲線,” Medium. Accessed: Jun. 27, 2024. [Online]. Available: https://medium.com/@SCU.Datascientist/python%E5%AD%B8%E7%BF%92%E7%AD%86%E8%A8%98-%E5%B8%B8%E8%A6%8B%E7%9A%84%E4%BA%8C%E5%85%83%E5%88%86%E9%A1%9E%E8%A9%95%E4%BC%B0%E6%8C%87%E6%A8%99-%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%99%A3-roc-%E6%9B%B2%E7%B7%9A-f214ecd84dab
[73] B. Pan, pxb1988/dex2jar. (Jun. 26, 2024). Java. Accessed: Jun. 27, 2024. [Online]. Available: https://github.com/pxb1988/dex2jar
[74] “Java Decompiler.” Accessed: Jul. 02, 2024. [Online]. Available: https://java-decompiler.github.io/
[75] “VirusTotal - Home.” Accessed: Jun. 27, 2024. [Online]. Available: https://www.virustotal.com/gui/home/upload
[76] R. Tarjan, “Depth-first search and linear graph algorithms,” in 12th Annual Symposium on Switching and Automata Theory (swat 1971), Oct. 1971, pp. 114–121. doi: 10.1109/SWAT.1971.10.
[77] V. K. V and J. C. D, “Android Malware Detection using Function Call Graph with Graph Convolutional Networks,” in 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), May 2021, pp. 279–287. doi: 10.1109/ICSCCC51823.2021.9478141. |