博碩士論文 111524010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.147.104.108
姓名 蔡狄澄(Ti-Cheng Tsai)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 結合生成式人工智慧與自然語言處理技術之科學探究定題自動回饋鷹架開發與初步評估
(Development and Preliminary Evaluation of an Automatic Feedback Scaffolding for Generating Questions During Scientific Inquiry:Using Generative Artificial Intelligence and Natural Language Processing Technologies)
相關論文
★ 支援國小科展探究教與學之網路科展探究系統的開發與評估★ 教師科展專業知識分享社群平台系統開發與評估
★ 科學小論文寫作平台的建置與評估★ 「探究教學線上教師社群平台」之建置與評估:以知識管理理論為基礎
★ 科學閱讀平台之發展與評估★ 以鷹架為基礎之科展探究系統平台之開發與評估
★ Improving Novice Teachers’ Instructional Practice Through Online Multilevel Reflection: The Role of Novice Teachers’ Beliefs★ The Effect s of Video-based Reflection on Preservice Teachers′ Micro Teaching Focusing on Meaningful Learning with ICT
★ Examining Teachers’ Online Video-Based Reflective Practice for Professional Development Regarding Guided-Discovery Learning Instruction★ 數位教育遊戲之開發與評估:以「Mr.道耳頓的奇幻歷險」為例
★ 應用自然語言處理技術開發基於知識翻新理論之線上非同步合作論證平台與平台初步評估★ 同步討論與反思系統(SDRS)對小學生知識建構學習環境感知和學習成果的影響
★ 具有集成設計框架的同步在線論證系統用戶界面:重新設計和評估★ 科學探究學習系統之開發與評估
★ 支援科學專題學習 之線上學習平台開發與評估★ 線上合作共同備課平台:開發與評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-6以後開放)
摘要(中) 隨著台灣教育部自 2014 年實施的「十二年國民基本教育課程綱要總綱」強調全人 教育及自主學習的重要性,高中已將自主學習納入課程,並規劃多種類型的活動,如探究與實作、專題研究及服務學習等,幫助學生解決問題、制定策略、創新思維及生成成果,培養靈活理解和終身學習技能。課綱前言指出,教育應致力於培養具有國際視野、自主學習能力、創新思維和社會責任感的全人。全球化和科技發展使自主學習成為21世紀生存的關鍵能力,並達成終生學習目標。在科學探究範疇,科學家進行探究專題時經 歷定義問題、規劃步驟、執行計劃、自我監督及結果檢視等自主學習過程。類似學習模式能提高學生參與度、技能發展及真實環境應用能力。本研究利用自然語言處理技術開 發教育聊天機器人,作為學生學習夥伴,提供個性化學習體驗和即時回饋,並透過問卷調查法針對43位高中生進行資料蒐集,評估學習者對系統的科技接受度及其功能與輔助工具的知覺有用性,並蒐集建議與回饋,以及透過問卷調查法針對3位高中自然科現 場教師進行資料蒐集,評估「科學探究定題自動回饋鷹架」研究問題之適用性。研究結果顯示,學生以及高中自然科現場教師皆對「科學探究定題自動回饋鷹架」給予正向回饋,期望本研究能為未來研究或系統開發與研究提供參考。
摘要(英) Following the ′General Guidelines of the 12-Year Basic Education Curriculum′ implemented by Taiwan′s Ministry of Education in 2014, which stresses holistic education and autonomous learning, high schools have integrated self-directed learning into their curriculum. This integration involves activities such as inquiry-based projects, specialized research, and service learning, aimed at enhancing problem-solving, innovative thinking, and lifelong learning skills. The curriculum emphasizes developing individuals who are globally aware, capable of self-directed learning, innovative, and socially responsible. This study leverages natural language processing technology to develop an educational chatbot, serving as a learning companion to provide personalized experiences and immediate feedback for students. Data was collected via surveys from 43 high school students to evaluate their acceptance of the technology, the perceived usefulness of the system’s functions and tools, and to gather improvement suggestions. Additionally, feedback from three high school science teachers was collected to assess the effectiveness of the ′Automatic Feedback Scaffolding for Scientific Inquiry Questioning.′ Results indicate that both students and teachers provided positive feedback on the scaffolding tool, highlighting its potential to influence future research and development in educational systems.
關鍵字(中) ★ 科學探究
★ 自然語言處理
★ 自我導向學習
★ 生成式人工智慧
關鍵字(英) ★ scientific inquiry
★ natural language processing
★ self-directed learning
★ generative artificial intelligence
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 X
圖目錄 XII
第一章 緒論 1
第一節 研究背景與動機 1
一、研究背景 1
二、研究動機 3
第二節 研究目的 4
一、開發「科學探究定題自動回饋鷹架」 4
二、對已完成開發的「科學探究定題自動回饋鷹架」進行初步評估 5
第三節 研究問題 6
一、學習者對於「科學探究定題自動回饋鷹架」之科技接受度為何? 6
二、學習者對於「科學探究定題自動回饋鷹架」之鷹架輔助功能及工具知覺有用性為何? 6
三、學習者對於「科學探究定題自動回饋鷹架」之系統建議與回饋為何? 7
四、對於「科學探究定題自動回饋鷹架」之自然語言模型成效為何? 7
五、教學現場教師對於「科學探究定題自動回饋鷹架」之最後研究問題之評估為何? 7
第四節 名詞解釋 8
一、科學探究(Scientific Inquiry) 8
二、自然語言處理(Natural Language Processing) 8
三、自主學習(Self-directed Learning) 8
第五節 研究範圍與限制 10
第二章 文獻探討 11
第一節 自然語言處理 11
一、生成式人工智慧(Generative AI, GAI) 11
二、大型語言模型(Large Language Model, LLM) 13
三、檢索增強生成(Retrieval-Augmented Generation, RAG) 15
四、量化(Quantizition) 18
五、低秩適應技術(Low-Rank Adaptation, LoRA) 20
六、向量檢索(Elasticsearch) 24
七、小結 25
第二節 自主學習 26
一、自主學習 26
二、自主學習的痛點 28
三、小結 29
第三節 科學探究 30
一、科學探究 30
二、新式科學探究架構 34
三、小結 35
第四節 相關系統介紹以及分析與比較 36
一、相關系統介紹 36
二、相關平台分析與比較 41
三、小結 44
第五節 總結 45
第三章 系統設計與實作 46
第一節 系統開發方式 46
一、系統開發人員架構圖 46
二、系統開發流程 47
第二節 系統設計與規劃 49
一、系統範圍 49
二、系統功能模組 53
三、系統使用案例 56
第三節 邏輯與資料處理接口實作 57
一、資料流流程規劃 57
二、API之設計與實作 58
三、資料庫設計 61
第四節 自然語言處理實作 64
一、資料準備與前處理 64
二、訓練環境與設備配置 69
三、文本相似度實作 73
四、訓練實作 75
第五節 系統介面與功能 83
第六節 系統配置 86
一、硬體設備與環境 86
二、軟體建置 86
三、使用環境建議 86
第四章 研究方法 87
第一節 研究對象 88
一、受測學習者基本資料 89
二、受測學習者之科技輔助學習相關經驗 89
三、受測學習者之科技輔助科學探究相關經驗 90
第二節 施測及評估與結果分析流程 91
一、施測及評估階段 91
二、結果分析階段 91
第三節 系統評估流程 92
一、系統平台介紹 93
二、系統平台操作 93
三、系統問卷施測與建議回饋 93
第四節 鷹架評估流程 94
一、資料蒐集與整理 94
二、評測資料生成 94
三、鷹架功能評測 95
第五節 研究工具 96
一、學習者對於「科學探究定題自動回饋鷹架」之科技接受度五點量表 97
二、學習者對於「科學探究定題自動回饋鷹架」之鷹架功能及輔助工具知覺有用性五點量表 98
三、學習者對於「科學探究定題自動回饋鷹架」之其他回饋問卷 99
四、對於「科學探究定題自動回饋鷹架」之自然語言模型成效為何 100
五、教學現場教師對於「科學探究定題自動回饋鷹架」最後研究問題之評估五點量表 102
六、結果分析編碼方式 103
第六節 資料收集與分析 104
一、資料收集 104
二、資料分析 104
第五章 研究結果與討論 105
第一節 學習者對於「科學探究定題自動回饋鷹架」科技接受度 106
一、學習者對於「科學探究定題自動回饋鷹架」之整體知覺有用性 106
二、學習者對於「科學探究定題自動回饋鷹架」之整體知覺易用性 109
三、學習者對於「科學探究定題自動回饋鷹架」之整體使用意願 111
四、小結 113
第二節 學習者對於「科學探究定題自動回饋鷹架」鷹架工具及輔助工具知覺有用性 114
一、學習者對於「科學探究定題自動回饋鷹架」之主題選擇鷹架知覺有用性為何? 114
二、學習者對於「科學探究定題自動回饋鷹架」之科學知識解答鷹架知覺有用性為何? 115
三、學習者對於「科學探究定題自動回饋鷹架」之引導問題鷹架知覺有用性為何? 116
四、學習者對於「科學探究定題自動回饋鷹架」之提問鷹架知覺有用性為何? 117
五、學習者對於「科學探究定題自動回饋鷹架」之查詢科展作品工具知覺有用性為何? 118
六、小結 119
第三節 學習者對於「科學探究定題自動回饋鷹架」之系統建議與回饋 120
一、功能建議 120
二、操作建議 121
三、未來使用意願與原因 122
第四節 對於「科學探究定題自動回饋鷹架」之自然語言模型成效為何 123
第五節 教學現場教師對於「科學探究定題自動回饋鷹架」最後研究問題之評估為何 126
第六章 結論與建議 129
第一節 研究結論 129
一、「科學探究定題自動回饋鷹架」協助學習者科學探究學習是有用的 129
二、「科學探究定題自動回饋鷹架」協助學習者進行科學探究學習是容易上手且容易使用的 129
三、「科學探究定題自動回饋鷹架」對於學習者而言,具有很高的使用意願 130
四、「科學探究定題自動回饋鷹架」所提供的輔助工具與鷹架對於學習者是有用的 130
五、「科學探究定題自動回饋鷹架」之自然語言模型在文本生成任務中具有一定能力 130
六、「科學探究定題自動回饋鷹架」所提供的研究問題對於學習者是有用的但應重點關注研究問題的清晰度、教學適應性 130
第二節 未來系統發展建議 132
一、功能改進建議 132
二、系統發展建議 132
參考文獻 134
附錄 142
附錄一 142
附錄二 147
參考文獻 洪菁穗, & 吳心楷. (2022). 高中科學教師對「探究與實作」課程的概念:課程特徵、挑戰、教學目標與教學活動 [High School Science Teachers′ Conceptions About the Curriculum of "Inquiry and Practice": Course Characteristics, Challenges, Teaching Goals and Activities]. 科學教育學刊, 30(1), 1-26. https://doi.org/10.6173/CJSE.202203_30(1).0001
教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北: 教育部
蔡宛庭. (2016). 支援科學專題學習之線上學習平台開發與評估 桃園市中壢區.
Almeida, F. L., & Simões, J. (2019). The Role of Serious Games, Gamification and Industry 4.0 Tools in the Education 4.0 Paradigm. Contemporary Educational Technology. https://doi.org/10.30935/cet.554469
Banchi, H., & Bell, R. (2008). THE MANY LEVELS OF Inquiry. Science and children, 46(2), 26-29. https://doi.org/10.2505/3/sc08_046_02
Cai, J., Morris, A. K., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., Kramer, S., & Hiebert, J. (2019). Posing Significant Research Questions. Journal for Research in Mathematics Education. https://doi.org/10.5951/JRESEMATHEDUC.50.2.0114
Cevallos, A., Latorre, L., Alicandro, G., Wanner, Z. l., Cerrato, I., Zarate, J. D., Alvarez, J., Villacreses, K., Pfeifer, M., Gutierrez, M., Villanueva, V., Rivera-Fournier, A., Riobó, A., Pombo, C., Puerto, F., & Rodriguez Breuning, J. (2023). Tech Report Generative AI.
Chen, C.-H., Chen, K.-Z., & Tsai, H.-F. (2022). Did Self-Directed Learning Curriculum Guidelines Change Taiwanese High-School Students’ Self-Directed Learning Readiness? The Asia-Pacific education researcher, 31(4), 409-426. https://doi.org/10.1007/s40299-021-00582-w
Chen, J., Lin, H., Han, X., & Sun, L. (2023). Benchmarking Large Language Models in Retrieval-Augmented Generation. AAAI Conference on Artificial Intelligence,
Chin, C., & Osborne, J. F. (2008). Students′ questions: a potential resource for teaching and learning science. Studies in Science Education, 44, 1 - 39. https://doi.org/10.1080/03057260701828101
Crawford, B. A. (2012). Moving the Essence of Inquiry into the Classroom: Engaging Teachers and Students in Authentic Science. In (pp. 25-42). Springer Netherlands. https://doi.org/10.1007/978-94-007-3980-2_3
Debbah, M. (2023). Large Language Models for Telecom. 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), 3-4. https://doi.org/10.1109/FMEC59375.2023.10305960
Douglas, M. R. (2023). Large Language Models. Communications of the ACM, 66, 7 - 7. https://doi.org/10.48550/arXiv.2307.05782
Edelson, D. C. (2001). Learning-for-use : A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38, 355-385. https://doi.org/10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
Epstein, Z., Hertzmann, A., Herman, L. M., Mahari, R., Frank, M. R., Groh, M., Schroeder, H., Smith, A., Akten, M., Fjeld, J., Farid, H., Leach, N., Pentland, A., & Russakovsky, O. (2023). Art and the science of generative AI. Science, 380, 1110 - 1111. https://doi.org/10.1126/science.adh4451
Gozalo-Brizuela, R., & Garrido-Merch′an, E. C. (2023). A survey of Generative AI Applications. ArXiv, abs/2306.02781. https://doi.org/10.48550/arxiv.2306.02781
Grow, G. O. (1991). Teaching Learners To Be Self-Directed. Adult Education Quarterly, 41(3), 125-149. https://doi.org/10.1177/0001848191041003001
Hartley, K., & Bendixen, L. D. (2001). Educational Research in the Internet Age: Examining the Role of Individual Characteristics [Article]. Educational Researcher, 30(9), 22-26. https://doi.org/10.3102/0013189X030009022
Herranen, J., & Aksela, M. K. (2019). Student-question-based inquiry in science education. Studies in Science Education, 55, 1 - 36. https://doi.org/10.1080/03057267.2019.1658059
Hmelo‐Silver, C. E. (2004). Problem-Based Learning: What and How Do Students Learn? Educational Psychology Review, 16, 235-266. https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
Hsu, C.-C., Chiu, C.-H., Lin, C.-H., & Wang, T.-I. (2015). Enhancing skill in constructing scientific explanations using a structured argumentation scaffold in scientific inquiry. Computers & Education, 91, 46-59. https://doi.org/https://doi.org/10.1016/j.compedu.2015.09.009
Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. ArXiv, abs/2106.09685. https://doi.org/10.48550/arxiv.2106.09685
Jégou, H., Douze, M., & Schmid, C. (2011). Product Quantization for Nearest Neighbor Search. IEEE transactions on pattern analysis and machine intelligence, 33, 117-128. https://doi.org/10.1109/TPAMI.2010.57
Jiang, Z., Xu, F. F., Gao, L., Sun, Z., Liu, Q., Dwivedi-Yu, J., Yang, Y., Callan, J., & Neubig, G. (2023). Active Retrieval Augmented Generation. ArXiv, abs/2305.06983. https://doi.org/10.48550/arxiv.2305.06983
Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., & McHardy, R. (2023). Challenges and Applications of Large Language Models. ArXiv, abs/2307.10169. https://doi.org/10.48550/arxiv.2307.10169
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921. https://doi.org/10.1002/tea.10115
Khan, L., McLeod, D., & Hovy, E. H. (2004). Retrieval effectiveness of an ontology-based model for information selection. The VLDB Journal, 13, 71-85. https://doi.org/10.1007/s00778-003-0105-1
Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology-Enhanced Inquiry Tools in Science Education: An Emerging Pedagogical Framework for Classroom Practice. Science Education, 91, 1010-1030. https://doi.org/10.1002/sce.20219
Kross, J., & Giust, A. M. (2019). Elements of Research Questions in Relation to Qualitative Inquiry. The Qualitative Report. https://doi.org/10.46743/2160-3715/2019.3426
Lai, C.-L., Hwang, G.-j., & Tu, Y.-H. (2018). The effects of computer-supported self-regulation in science inquiry on learning outcomes, learning processes, and self-efficacy. Educational Technology Research and Development, 66, 863 - 892. https://doi.org/10.1007/s11423-018-9585-y
Lee, O., Buxton, C., Lewis, S., & Leroy, K. (2006). Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention. Journal of Research in Science Teaching, 43(7), 607-636. https://doi.org/10.1002/tea.20141
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. ArXiv, abs/2005.11401. https://doi.org/10.48550/arxiv.2005.11401
Mamun, M. A. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 103695. https://doi.org/https://doi.org/10.1016/j.compedu.2019.103695
Manlove, S., Lazonder, A. W., & de Jong, T. (2009). Collaborative versus individual use of regulative software scaffolds during scientific inquiry learning. Interactive Learning Environments, 17(2), 105-117. https://doi.org/10.1080/10494820701706437
Micikevicius, P., Stosic, D., Burgess, N., Cornea, M., Dubey, P. K., Grisenthwaite, R., Ha, S., Heinecke, A., Judd, P., Kamalu, J., Mellempudi, N., Oberman, S. F., Shoeybi, M., Siu, M., & Wu, H. (2022). FP8 Formats for Deep Learning. ArXiv, abs/2209.05433. https://doi.org/10.48550/arxiv.2209.05433
Mu, C., Zhao, J., Yang, G., Zhang, J., & Yan, Z. (2018). Towards Practical Visual Search Engine within Elasticsearch. ArXiv, abs/1806.08896. https://doi.org/10.48550/arxiv.1806.08896
Muller, M. J., Chilton, L. B., Kantosalo, A., Martin, C. P., & Walsh, G. (2022). GenAICHI: Generative AI and HCI. CHI Conference on Human Factors in Computing Systems Extended Abstracts. https://doi.org/10.1145/3544549.3573794
Ojo, J., Ogueji, K., Stenetorp, P., & Adelani, D. I. (2023). How good are Large Language Models on African Languages? ArXiv, abs/2311.07978. https://doi.org/10.48550/arxiv.2311.07978
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003
Pérez, J. Q., Daradoumis, T., & Puig, J. M. M. (2020). Rediscovering the use of chatbots in education: A systematic literature review. Computer Applications in Engineering Education, 28, 1549 - 1565. https://doi.org/10.1002/cae.22326
Ram, O., Levine, Y., Dalmedigos, I., Muhlgay, D., Shashua, A., Leyton-Brown, K., & Shoham, Y. (2023). In-Context Retrieval-Augmented Language Models. Transactions of the Association for Computational Linguistics, 11, 1316-1331. https://doi.org/10.1162/tacl_a_00605
Rygl, J., Pomikálek, J., Rehurek, R., Růžička, M., Novotný, V., & Sojka, P. (2017). Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines. Rep4NLP@ACL,
Samuelson, P. (2023). Generative AI meets copyright. Science, 381, 158 - 161. https://doi.org/10.1126/science.adi0656
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-Driven Inquiry: Integrating Conceptual and Epistemic Scaffolds for Scientific Inquiry. Science Education, 88, 345-372. https://doi.org/10.1002/SCE.10130
Shahul, E., James, J., Anke, L. E., & Schockaert, S. (2023). RAGAs: Automated Evaluation of Retrieval Augmented Generation. Conference of the European Chapter of the Association for Computational Linguistics,
Sharples, M., Taylor, J., & Vavoula, G. (2005). Towards a theory of mobile learning. Proceedings of mLearn,
Shi, R., Zhang, J., Chu, W., Bao, Q., Jin, X., Gong, C., Zhu, Q., Yu, C., & Rosenberg, S. (2015). MDP and Machine Learning-Based Cost-Optimization of Dynamic Resource Allocation for Network Function Virtualization. 2015 IEEE International Conference on Services Computing, 65-73. https://doi.org/10.1109/SCC.2015.19
Song, L., & Hill, J. R. (2007). A conceptual model for understanding self-directed learning in online environments [Article]. Journal of Interactive Online Learning, 6(1), 27-42. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947609385&partnerID=40&md5=c98954a323fd401eff1c7476125e833e
Wagle, S. N., Munikoti, S., Acharya, A., Smith, S., & Horawalavithana, S. (2023). Empirical evaluation of Uncertainty Quantification in Retrieval-Augmented Language Models for Science. ArXiv, abs/2311.09358. https://doi.org/10.48550/arxiv.2311.09358
Wang, Z., Wohlwend, J., & Lei, T. (2019). Structured Pruning of Large Language Models. ArXiv, abs/1910.04732. https://doi.org/10.48550/arXiv.1910.04732
Weisz, J. D., Muller, M. J., He, J., & Houde, S. (2023). Toward General Design Principles for Generative AI Applications 130-144. IUI Workshops,
Wong, L.-H., & Looi, C.-K. (2012). Swarm intelligence: new techniques for adaptive systems to provide learning support. Interactive Learning Environments, 20(1), 19-40. https://doi.org/10.1080/10494821003714681
Yu, W. (2022). Retrieval-augmented Generation across Heterogeneous Knowledge. North American Chapter of the Association for Computational Linguistics,
Yuen, A. H. K., & Ma, W. W. K. (2008). Exploring teacher acceptance of e‐learning technology. Asia-Pacific journal of teacher education, 36(3), 229-243. https://doi.org/10.1080/13598660802232779
Zeng, Y., & Lee, K. (2024). The Expressive Power of Low-Rank Adaptation. arXiv.org. https://doi.org/10.48550/arxiv.2310.17513
Zhang, P., & Boulos, M. N. K. (2023). Generative AI in Medicine and Healthcare: Promises, Opportunities and Challenges. Future Internet, 15, 286. https://doi.org/10.3390/fi15090286
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., . . . Wen, J.-r. (2023). A Survey of Large Language Models. ArXiv, abs/2303.18223. https://doi.org/10.48550/arxiv.2303.18223
Zoupanos, S., Kolovos, S., Kanavos, A., Papadimitriou, O., & Maragoudakis, M. (2022). Efficient comparison of sentence embeddings. Proceedings of the 12th Hellenic Conference on Artificial Intelligence. https://doi.org/10.48550/arXiv.2204.00820
指導教授 吳穎沺 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明