博碩士論文 111430008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.133.107.11
姓名 吳秉純(Bing-Chuen Wu)  查詢紙本館藏   畢業系所 會計研究所
論文名稱 應用機器學習演算法預測首次代幣發行詐欺之可能
(Applying machine learning algorithms to predict the probability of ICO fraud.)
相關論文
★ 企業社會責任與會計績效指標之關聯性: 考量網頁呈現效果★ 企業社會責任揭露與網頁呈現對企業財務績效之關聯性
★ 企業社會責任與投資人評價之關聯性: 考量網頁呈現效果★ 我國企業之資訊安全事件探討-以法令面分析
★ 採用iXBRL對散戶持股比率與交易量之影響★ 首次發行代幣公司網站呈現方法與交易量之研究
★ iXBRL是否能降低資訊不對稱?★ 財務報表API之可行性
★ 功能型與證券型代幣發行白皮書相似度對發行成功與否之影響★ 首次代幣發行白皮書之主題分析對首次代幣發行之影響
★ 資訊安全事件與公司長短期績效-以臺灣資訊 安全事件為例★ 資訊安全之決定因素-考量家族企業與董事會背景
★ 首次代幣發行白皮書可讀性對 募資成功與否之影響★ 網站資訊揭露對首次代幣發行之影響
★ 公司申請法人機構識別碼對股東權益資金成本之影響★ COVID-19對於實質盈餘管理之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-17以後開放)
摘要(中) 摘要
首次代幣發行(ICO)是一種由區塊鏈和加密貨幣所衍生出來的募資方式,相較於首次公開募股(IPO),ICO利用區塊鏈的特性提升了交易的透明度及速度,不僅節省了複雜的申請流程,還有機會能吸引到全球投資者的資金。但隨著ICO發行數量的增加,利用其行使詐騙的案例層出不窮。因為ICO沒有強制揭露資訊的規定,發行方擁有決定資訊揭露程度的權利,因此在事前投資人大多只能從ICO的網站及白皮書取得ICO相關資訊。為了解決ICO投資者頻繁遭受詐騙的情況,本研究利用白皮書資訊建立預測模型來預測ICO為詐欺的可能性。本研究採用Random Forest、KNN、SVM、Naïve Bayes、Probit作為預測模型,以2016-2020年ICO盛行期間的白皮書作為研究樣本,並進一步了解白皮書內提供的各項資訊對ICO詐欺的影響程度。研究結果顯示,五種預測模型中SVM的預測表現最佳,且在本研究用來預測ICO詐騙的特徵中以詳述智慧合約與願景藍圖兩項資訊對案例的影響最顯著,代表這兩項資訊最能事前預測案例是否未來可能產生舞弊。本研究提供未來ICO的投資者一種新的評估方式,使其降低遭受詐騙的可能性。







關鍵詞:首次代幣發行、詐欺預測、機器學習
摘要(英) Abstract
Initial Coin Offering (ICO) is a fundraising method derived from blockchain and cryptocurrency. Compared to Initial Public Offering (IPO) , ICO make good use of blockchain to enhance transaction transparency and speed, which not only avoid the complex application process but also has the potential to attract funds from global investors. However, with the increasing number of ICOs, cases of fraud have proliferated. Since ICOs are not required to disclose information compulsorily, issuers have the right to determine the extent of information disclosure. Therefore, investors often can only obtain related information from the ICO’s website and white paper before investing. To address the frequent fraud faced by ICO investors, this study establishes a prediction model using white paper information to predict the likelihood of an ICO being fraudulent. The study employs Random Forest, KNN, SVM, Naïve Bayes, and Probit as prediction models, using white papers of ICOs between 2016 and 2020 as research samples, and further investigates the impact of various information provided in the white papers on ICO fraud. The results show that among the five prediction models, SVM performs the best. Additionally, among the features used to predict ICO fraud in this study, detailed information on smart contracts and vision blueprints had the most significant impact on the result, indicating that these two pieces of information are the most indicative when it comes to predicting future fraud. This study provides a new evaluation method for future ICO investors, reducing the likelihood of investors getting defrauded.


Keywords: initial coin offering, fraud prediction, machine learning
關鍵字(中) ★ 首次代幣發行
★ 詐欺預測
★ 機器學習
關鍵字(英) ★ initial coin offering
★ fraud prediction
★ machine learning
論文目次 目錄

中文摘要 i
英文摘要 ii
第一章 緒 論 1
第二章 文獻回顧 3
第一節 首次代幣發行之基礎 3
第二節 ICO詐欺情況 5
第三節 白皮書資訊 6
第三章 研究設計及方法 9
第一節 樣本選取與資料來源 9
第二節 特徵選取 11
第三節 模型建構 13
第四章 實證結果與分析 18
第一節 預測結果之分類與評分 18
第二節 實證結果 19
第三節 額外分析結果 19
第五章 敏感性分析 21
第六章 結論 22
參考文獻 23
附錄 特徵探勘範例 26



表目錄

表1 兩種案例各類別之數量 10
表2 樣本篩選分析 11
表3 特徵說明 12
表4 前20種特徵在詐欺案例中之情況 14
表5 預測與結果矩陣 18
表6 各模型預測能力之分數比較 19
表7 各特徵對ICO未來結果之影響 20



圖目錄
圖1 ICO詐欺案件範例 10
圖2 不同特徵數之結果比較 21
參考文獻 Bourveau, Thomas, Emmanuel T. De George, Atif Ellahie, and Daniele Macciocchi. 2022. “The Role of Disclosure and Information Intermediaries in an Unregulated Capital Market: Evidence from Initial Coin Offerings.” Journal of Accounting Research 60 (1): 129–67.

Fahlenbrach, Rüdiger, and Marc Frattaroli. 2021. “ICO Investors.” Financial Markets and Portfolio Management 35 (1): 1–59.

Fan, Wenjie, Yanqing Lin, and Wei Fan. 2020. “Betting on the Horse, the Jockey or the Tips? Evidence from Blockchain-Based Fundraising via Initial Coin Offerings.” Pacific Asia Conference on Information Systems.

Feng, Chen, Nan Li, M.H. Franco Wong, and Mingyue Zhang. 2019. “Initial Coin Offerings, Blockchain Technology, and White Paper Disclosures.” SSRN Electronic Journal.

Florysiak, David, and Alexander Schandlbauer. 2022. “Experts or Charlatans? ICO Analysts and White Paper Informativeness.” Journal of Banking & Finance 139 (June):106476.

Grobys, Klaus, Timothy King, and Niranjan Sapkota. 2022. “A Fractal View on Losses Attributable to Scams in the Market for Initial Coin Offerings.” Journal of Risk and Financial Management 15 (12): 579.

Hornuf, Lars, Theresa Kück, and Armin Schwienbacher. 2022. “Initial Coin Offerings, Information Disclosure, and Fraud.” Small Business Economics 58 (4): 1741–59.

Liebau, Dan, and Patrick Schueffel. 2019. “Crypto-Currencies and ICOs: Are They Scams? An Empirical Study.” SSRN Electronic Journal.

Liu, Zhunzhun, and Lu-Xi Zou. 2023. “How Does Information Disclosure Of Cryptocurrency Whitepaper Affect Initial Coin Offering Fundraising Success?” Journal of Organizational Computing and Electronic Commerce 33 (1–2): 22–40.

Lennart, Ante, Philipp Sandner, and Ingo Fiedler 2018. “Blockchain-Based ICOs: Pure Hype or the Dawn of a New Era of Startup Financing? ” Journal of Risk and Financial Management 11(4):80.

Lorch, Robert F. 1989. “Text-Signaling Devices and Their Effects on Reading and Memory Processes.” Educational Psychology Review 1 (3): 209–34.

Momtaz, Paul P. 2021. “Entrepreneurial Finance and Moral Hazard: Evidence from Token Offerings.” Journal of Business Venturing 36 (5): 106001.

Monrat, Ahmed Afif, Olov Schelen, and Karl Andersson. 2019. “A Survey of Blockchain From the Perspectives of Applications, Challenges, and Opportunities.” IEEE Access 7:117134–51.

Obukhova, E.A. 2020. “ICO as a Modern Method for Financing High-Tech Projects.” Problems of Economic Transition 62 (4–6): 249–60.

Panin, Aleksei, Kai-Kristian Kemell, and Veikko Hara. 2019. “Initial Coin Offering (ICO) as a Fundraising Strategy: A Multiple Case Study on Success Factors.” In Software Business, edited by Sami Hyrynsalmi, Mari Suoranta, Anh Nguyen-Duc, Pasi Tyrväinen, and Pekka Abrahamsson, 370:237–51. Lecture Notes in Business Information Processing. Cham: Springer International Publishing.

Park, Keundug, and Heung-Youl Youm. 2024. “Proposal of a Service Model for Blockchain-Based Security Tokens.” Big Data and Cognitive Computing 8 (3): 30.

Parrondo, Luz. 2023. “Cryptoassets: Definitions and Accounting Treatment under the Current International Financial Reporting Standards Framework.” Intelligent Systems in Accounting, Finance and Management 30 (4): 208–27.

Samieifar, Shadi, and Dirk G. Baur. 2021. “Read Me If You Can! An Analysis of ICO White Papers.” Finance Research Letters 38 (January):101427.

Teng, Fam Guo, Paul R Griffin, and Andrew Koh. n.d. 2019. “Picking Flowers in an ICO Garden.” https://ink.library.smu.edu.sg/sis_research/5900/

Yen, Ju‐Chun, Tawei Wang, and Yu‐Hung Chen. 2021. “Different Is Better: How Unique Initial Coin Offering Language in White Papers Enhances Success.” Accounting & Finance 61 (4): 5309–40.
指導教授 顏如君(Ju-Chun Yen) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明