博碩士論文 110825005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.191.28.187
姓名 羅珮瑄(Pei-Xuan Luo)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱
(Investigation of the Perception of Facial Attractiveness and Race: Insights from Behavioral and Neurophysiological Findings in the Visual Masking and Continuous Flash Suppression Paradigms)
相關論文
★ The influence of experience on the SNARC effect -the mapping between sequential information and spatial representation★ 中文名詞動詞的具體效果的神經相關活動
★ 字形和語意對短期記憶的影響: 從行為及腦造影實驗而來的證據★ 中文字音與字形相似度對語言短期記憶之影響
★ 非語音訊息對中英雙語使用者的語言短期記憶的貢獻★ 中文短期記憶之字形表徵研究
★ The temporal dynamics of the code-switching between alphabetic and logographic languages in unbalancedChinese-English bilinguals★ The acquisition of Chinese literacy as a second language correlates with statistical learning of implicit transitional probability
★ 以行為及腦造影證據探討英文字音及字形相似效果對中英雙語使用者之短期記憶的影響★  The behavioral and neural correlates of orthographic lexicon and orthographic buffer in Chinese writing
★ How the Brain Deals with the Asymmetry between Chinese Subject and Object Relative Clauses: Support for a Dynamic Processing Theory★ EXPLORATION OF THE NEURAL CORRELATES OF SYNTACTIC PROCESSING IN CHINESE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING AND EVENT-RELATED POTENTIALS
★ 視知覺相關能力以及統計學習能力對中文識字學習的影響:來自以中文為母語或外語學習者的證據★ Correlation of statistical learning of different implicit transitional probabilities with Chinese literacy acquisition in non-native adult learners
★ 字形相似性、字義相似性以及視覺相似性對於中文工作記憶的影響★ The Characteristics and Neurophysiological Correlates of Componential Visual Statistical Learning
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-21以後開放)
摘要(中) 臉孔吸引力(facial attractiveness)在人類演化歷程中有其價值,臉孔較吸引人的個體,在生存競爭中有其優勢。過往的實徵研究不僅展現了影響臉孔吸引力的普遍因素,還指出吸引力偏好會被生活經驗所影響。然而,儘管先前的研究在臉孔編碼(encoding)和辨識(recognition)歷程中可穩定觀察到其他種族效應(other-race effect,ORE,即相比於其他種族的臉孔,人們對自己種族的臉孔有更好的辨別和記憶能力),但並未發現自己種族臉孔(own-race faces)在吸引力判斷中具有優勢。有鑒於在臉孔吸引力的外顯判斷中缺乏ORE的證據,本研究的目的為探討在沒有意識到臉孔的情況下,對臉孔種族屬性的知覺是否會影響對其吸引力的判斷。
根據研究臉孔知覺的文獻,使用視覺遮蔽(visual masking)和持續閃現抑制(continuous flash suppression,CFS)派典的行為研究顯示,針對臉孔吸引力和種族這兩種屬性的知覺都是自動且可無意識地處理的。本研究採用這兩種派典,並同時記錄事件關聯電位(event-related potentials,ERPs),以檢驗在早期臉孔處理歷程中無意識(unconscious)和有意識(conscious)處理階段的臉孔種族和吸引力知覺。在視覺遮蔽派典中,臉孔刺激在前遮蔽刺激和後遮蔽刺激之間出現,以避免臉孔的視覺訊息在臉孔呈現之前或之後被處理。在CFS派典中,CFS刺激呈現於主視眼,使呈現於另一隻眼的臉孔刺激在試驗開始時無法被察覺,並透過臉孔被偵測到的反應時間來測量臉孔進入意識所需的時間。
在本論文中,我們首先進行了兩個行為實驗,分別在視覺遮蔽派典中呈現短時間(100毫秒或更短)的臉孔刺激,以檢驗臉孔種族和吸引力這兩個屬性在意識階段被處理到的相對速度(實驗一),以及探討這兩個臉孔屬性是否在CFS派典中可被無意識地處理、並展現出交互作用(實驗二)。基於這兩個行為實驗,我們進一步執行了兩個神經生理實驗(實驗三和四),以檢驗臉孔種族和吸引力這兩個屬性對行為反應的影響是否源於潛意識(subliminal)和意識(supraliminal)階段的早期臉孔知覺。
在實驗一的結果中,當臉孔刺激呈現33.34毫秒時,受試者能夠正確判斷臉孔的種族和吸引力程度,表示在有意識的判斷中,這兩個屬性均能夠被有效地處理。在實驗二中,我們發現在CFS流程下,對自己種族臉孔的偵測時間快於偵測其他種族的臉孔。此外,在有持續閃現刺激的抑制下,臉孔的吸引力與臉孔倒置效應(face inversion effect,FIE,即相對於倒立臉孔,正立臉孔的檢測時間更快)的強度呈正相關,而且該相關的強度在自己種族臉孔與其他種族臉孔之間並無顯著差異。這些實驗結果顯示,臉孔種族和吸引力均可被無意識地處理,而且這兩種屬性的處理並無交互作用、不相互影響。在實驗三和四的腦電波實驗中,我們從有意識情況下的N170成分大小觀察到臉孔種族和臉孔呈現方向之間存在交互作用,這表示臉孔配置(face configuration)的編碼受到臉孔種族的調節。然而,我們並沒有觀察到清楚的ERP證據可反映在無意識情況下對臉孔吸引力的處理。
總結來說,本論文的行為結果顯示,臉孔的吸引力和種族屬性都可以迅速且無意識地被處理。然而,我們的神經生理證據僅揭露了在早期臉孔知覺歷程中,臉孔種族在潛意識和有意識情況下的效果,但沒有清楚的ERP訊號可反映臉孔吸引力在無意識狀態下的處理歷程。為了解釋這些發現,我們提出了一個理論模型,說明在處理自己種族和其他種族的正立、倒立臉孔時,會影響N170成分強度的因素,以及視覺遮蔽和CFS如何阻斷視覺通路中的神經處理機制。
摘要(英) Facial attractiveness reflects the evolutionary value of individuals. Empirical studies have not only demonstrated the general components contributing to facial attractiveness, but also indicated that attractiveness preferences are shaped by life experiences. However, previous studies did not find an own-race advantage in explicit attractiveness judgments of faces. In contrast, a robust other-race effect (ORE) in the encoding and recognition of faces has been consistently shown, indicating better discrimination and memorability for own-race faces compared to other-race faces. Given the absence of the ORE in explicit judgments of facial attractiveness, we aimed to investigate whether the perception of the race of faces affects perceived attractiveness in implicit judgments without conscious face awareness.
Both the perception of facial attractiveness and face race have been suggested to be processed automatically and unconsciously in behavioral studies using the visual masking and continuous flash suppression (CFS) paradigms. In the present study, we employed the two paradigms, in combination with simultaneous recordings of event-related potentials (ERPs), to investigate the perception of face race and attractiveness during early face processing in both subliminal/unconscious and supraliminal/conscious processing stages. In the visual masking paradigm, face stimuli are presented between forward and backward masks in order to prevent the processing of visual information from face stimuli before and after the face presentation. In the CFS paradigm, the CFS stimulus presented to the dominant eye renders the face stimulus presented to the other eye invisible at the beginning of a trial, and the duration the face needs to break into awareness is measured by the reaction time (RT) of face detection.
We first conducted two behavioral experiments to examine the relative processing speed of the race and attractiveness of faces for these two attributes to reach conscious stages during short face exposures of 100 ms or less in the visual masking paradigm (Experiment 1), and whether the two face attributes are unconsciously processed and interact with each other in the CFS paradigm (Experiment 2). Based on these two experiments, we further conducted two neurophysiological experiments (Experiments 3 & 4) to examine whether the effects of face race and attractiveness on behavioral responses arise from early face perception in both subliminal and supraliminal conditions.
In Experiment 1, participants showed sensitivity to the race and attractiveness of faces when the face stimulus was presentation for 33.34 ms, suggesting efficient processing of face race and attractiveness in explicit judgments. In Experiment 2, we found a significant difference on the face detection time between own-race and other-race faces under the CFS procedure. Also, the attractiveness of faces was positively correlated with the face inversion effect (FIE, the faster detection time for faces in the upright than in the inverted orientation) under the CFS, while this correlation was not significantly different between own-race and other-race faces. These face detection results suggest that face race and attractiveness are processed unconsciously, while the two types of processing do not interact with each other. In Experiments 3 and 4, we observed an interaction effect between face race and orientation on the N170 component under supraliminal conditions, suggesting that the encoding of face configuration is modulated by face race. However, we did not have strong ERP evidence indicating unconscious processing of facial attractiveness in subliminal conditions.
In summary, our behavioral findings suggest that both the attractiveness and race of faces are processed rapidly and unconsciously. However, our ERP findings in early face perception only showed the effects of face race in both subliminal and supraliminal conditions. We did not have strong neurophysiological evidence to suggest that facial attractiveness is processed in early face perception without conscious awareness. To account for these findings, we proposed a model which specifies the factors that affect the magnitude of the N170 component across unconscious and conscious levels of face processing when encountering own-race and other-race upright and inverted faces, and how visual masking and CFS may interrupt the neural mechanisms in visual pathways.
關鍵字(中) ★ 臉孔吸引力
★ 臉孔種族
★ 臉孔知覺
★ 視覺遮蔽
★ 持續閃現抑制
關鍵字(英) ★ facial attractiveness
★ face race
★ face perception
★ visual masking
★ continuous flash suppression
論文目次 Chinese Abstract VI
Abstract VIII
Acknowledgments XI
Table of Contents XIII
List of Figures XVIII
List of Tables XXII
List of Abbreviations XXIII
Chapter 1: Introduction 1
1-1 Facial attractiveness in behavioral studies 1
1-1-1 Components of facial attractiveness 1
1-1-2 Innate and acquired attractiveness preferences for faces 4
1-2 Familiarity with own-race and other-race faces in face processing 5
1-2-1 The other-race effect (ORE) in face perception and recognition memory 6
1-2-2 The ORE in attractiveness judgment of faces? 8
1-3 Neuroscience research in explicit face processing 9
1-3-1 The brain regions identified in functional neuroimaging studies 9
1-3-2 The event-related potentials/fields (ERPs/ERFs) identified in neurophysiological studies 11
1-3-3 The neurocorrelates of processing of face attractiveness and race 15
1-4 Automatic attractiveness judgment and race classification of faces 18
1-4-1 Unconscious processing of face attributes: Evidence from the visual masking paradigm 18
1-4-2 Unconscious processing of the attractiveness and race of faces: Evidence from the continuous flash suppression (CFS) paradigm 21
1-4-3 The neurocorrelates of unconscious face perception 22
1-5 Summary and aims of the present study 24
Chapter 2: Experiment 1 27
2-1 Method 27
2-1-1 Participants 27
2-1-2 Design and stimuli 27
2-1-3 Procedure 29
2-2 Results 30
2-2-1 The processing of gender, race, and attractiveness information: From the preconscious level to the conscious level 31
2-2-2 The relationship between the processing of gender, race, and attractiveness information in face perception 39
2-2-2-1 Gender judgment: The faces grouped by race and attractiveness 40
2-2-2-2 Race judgment: the faces grouped by gender and attractiveness 46
2-2-2-3 Pre-determined attractiveness judgment: the faces grouped by gender and race 53
2-2-2-4 Self-determined attractiveness judgment: the faces grouped by gender and race 58
2-3 Discussions 63
Chapter 3: Experiment 2 67
3-1 Method 67
3-1-1 Participants 67
3-1-2 Design and stimuli 67
3-1-3 Procedure 68
3-2 Results 70
3-2-1 Face detection under the CFS: Behavioral responses in the face position judgment task 70
3-2-2 Attractiveness ratings 72
3-2-3 The FIE on the face detection times under the CFS 72
3-2-4 Correlations between the detection times and attractiveness ratings of faces 73
3-3 Discussions 76
Chapter 4: Experiment 3 79
4-1 Method 79
4-1-1 Participants 79
4-1-2 Design and stimuli 79
4-1-3 Procedure 81
4-1-4 EEG Recording and ERPs Preprocessing 84
4-2 Results 86
4-2-1 Behavioral results 86
4-2-1-1 Thresholds of contrast calibration 86
4-2-1-2 Detection rate and the RTs of face detection 87
4-2-2 ERP results 91
4-2-2-1 High-contrast faces 92
4-2-2-1 Low-contrast faces 96
4-2-3 Correlations between the ERPs and attractiveness of low-contrast faces 99
4-3 Discussions 101
Chapter 5: Experiment 4 107
5-1 Method 108
5-1-1 Participants 108
5-1-2 Design and stimuli 108
5-1-3 Procedure 108
5-1-4 EEG Recording and ERPs Preprocessing 110
5-2 Results 110
5-2-1 Behavioral results 111
5-2-1-1 Face orientation judgment in the three durations 111
5-2-1-2 Attractiveness ratings 118
5-2-2 ERP results 118
5-2-2-1 The face effect: Scrambled face vs. upright and inverted faces 118
5-2-2-2 The FIE for faces in two genders and two races 123
5-2-3 Correlations between the ERPs and attractiveness of face stimuli 130
5-3 Discussions 132
Chapter 6: General Discussions 135
6-1 Results summary 135
6-2 Different stages of face processing underlying the N170 component 139
6-3 Insensitivity of neurophysiological correlates to unconscious visual processing 143
6-4 Limitations and future directions 147
6-5 Conclusions 148
References 150
參考文獻 Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in cognitive sciences, 18(7), 370-375.
Chatterjee, A., & Vartanian, O. (2016). Neuroscience of aesthetics. Annals of the New York Academy of Sciences, 1369(1), 172-194.
Pearce, M. T., Zaidel, D. W., Vartanian, O., Skov, M., Leder, H., Chatterjee, A., & Nadal, M. (2016). Neuroaesthetics: The cognitive neuroscience of aesthetic experience. Perspectives on psychological science, 11(2), 265-279.
Thornhill, R., & Gangestad, S. W. (1999). Facial attractiveness. Trends in cognitive sciences, 3(12), 452-460.
Little, A. C., Jones, B. C., & DeBruine, L. M. (2011). Facial attractiveness: evolutionary based research. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1571), 1638-1659.
Little, A. C. (2021). Facial attractiveness. Encyclopedia of evolutionary psychological science, 2887-2891.
Rhodes, G. (2006). The evolutionary psychology of facial beauty. Annu. Rev. Psychol., 57, 199-226.
Grammer, K., & Thornhill, R. (1994). Human (Homo sapiens) facial attractiveness and sexual selection: the role of symmetry and averageness. Journal of comparative psychology, 108(3), 233.
Rhodes, G., Proffitt, F., Grady, J. M., & Sumich, A. (1998). Facial symmetry and the perception of beauty. Psychonomic Bulletin & Review, 5, 659-669.
Perrett, D. I., Burt, D. M., Penton-Voak, I. S., Lee, K. J., Rowland, D. A., & Edwards, R. (1999). Symmetry and human facial attractiveness. Evolution and human behavior, 20(5), 295-307.
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average. Psychological science, 1(2), 115-121.
Langlois, J. H., Roggman, L. A., & Musselman, L. (1994). What is average and what is not average about attractive faces?. Psychological science, 5(4), 214-220.
Thornhill, R., & Gangestad, S. W. (1993). Human facial beauty: Averageness, symmetry, and parasite resistance. Human nature, 4, 237-269.
Potter, T., Corneille, O., Ruys, K. I., & Rhodes, G. (2007). “Just another pretty face”: A multidimensional scaling approach to face attractiveness and variability. Psychonomic Bulletin & Review, 14(2), 368-372.
Potter, T., & Corneille, O. (2008). Locating attractiveness in the face space: Faces are more attractive when closer to their group prototype. Psychonomic Bulletin & Review, 15(3), 615-622.
Rhodes, G., Sumich, A., & Byatt, G. (1999). Are average facial configurations attractive only because of their symmetry?. Psychological science, 10(1), 52-58.
Rhodes, G., Yoshikawa, S., Clark, A., Lee, K., McKay, R., & Akamatsu, S. (2001). Attractiveness of facial averageness and symmetry in non-Western cultures: In search of biologically based standards of beauty. Perception, 30(5), 611-625.
Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., ... & Akamatsu, S. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394(6696), 884-887.
Fiala, V., Třebický, V., Pazhoohi, F., Leongómez, J. D., Tureček, P., Saribay, S. A., ... & Kleisner, K. (2021). Facial attractiveness and preference of sexual dimorphism: A comparison across five populations. Evolutionary Human Sciences, 3, e38.
Langlois, J. H., Ritter, J. M., Roggman, L. A., & Vaughn, L. S. (1991). Facial diversity and infant preferences for attractive faces. Developmental Psychology, 27(1), 79
Slater, A., Von der Schulenburg, C., Brown, E., Badenoch, M., Butterworth, G., Parsons, S., & Samuels, C. (1998). Newborn infants prefer attractive faces. Infant Behavior and Development, 21(2), 345-354.
Langlois, J. H., Ritter, J. M., Roggman, L. A., & Vaughn, L. S. (1991). Facial diversity and infant preferences for attractive faces. Developmental Psychology, 27(1), 79
Slater, A., Von der Schulenburg, C., Brown, E., Badenoch, M., Butterworth, G., Parsons, S., & Samuels, C. (1998). Newborn infants prefer attractive faces. Infant Behavior and Development, 21(2), 345-354.
Cooper, P. A., Geldart, S. S., Mondloch, C. J., & Maurer, D. (2006). Developmental changes in perceptions of attractiveness: a role of experience?. Developmental science, 9(5), 530-543.
Germine, L., Russell, R., Bronstad, P. M., Blokland, G. A., Smoller, J. W., Kwok, H., ... & Wilmer, J. B. (2015). Individual aesthetic preferences for faces are shaped mostly by environments, not genes. Current Biology, 25(20), 2684-2689.
Bronstad, P. M., & Russell, R. (2007). Beauty is in the ‘we’of the beholder: Greater agreement on facial attractiveness among close relations. Perception, 36(11), 1674-1681.
Cooper, P. A., & Maurer, D. (2008). The influence of recent experience on perceptions of attractiveness. Perception, 37(8), 1216-1226.
O’toole, A. J., Deffenbacher, K. A., Valentin, D., & Abdi, H. (1994). Structural aspects of face recognition and the other-race effect. Memory & Cognition, 22, 208-224.
Peskin, M., & Newell, F. N. (2004). Familiarity breeds attraction: Effects of exposure on the attractiveness of typical and distinctive faces. Perception, 33(2), 147-157.
Monin, B. (2003). The warm glow heuristic: when liking leads to familiarity. Journal of personality and social psychology, 85(6), 1035.
Corneille, O., Monin, B., & Pleyers, G. (2005). Is positivity a cue or a response option? Warm glow vs evaluative matching in the familiarity for attractive and not-so-attractive faces. Journal of Experimental Social Psychology, 41(4), 431-437.
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of memory and language, 46(3), 441-517.
Parkin, A. J., Gardiner, J. M., & Rosser, R. (1995). Functional aspects of recollective experience in face recognition. Consciousness and Cognition, 4(4), 387-398.
Ellis, H. D., Shepherd, J. W., & Davies, G. M. (1979). Identification of familiar and unfamiliar faces from internal and external features: Some implications for theories of face recognition. Perception, 8(4), 431-439.
Klatzky, R. L., & Forrest, F. H. (1984). Recognizing familiar and unfamiliar faces. Memory & cognition, 12, 60-70.
Meissner, C. A., & Brigham, J. C. (2001). Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychology, Public Policy, and Law, 7(1), 3.
Malpass, R. S., & Kravitz, J. (1969). Recognition for faces of own and other race. Journal of personality and social psychology, 13(4), 330.
McKone, E., Stokes, S., Liu, J., Cohan, S., Fiorentini, C., Pidcock, M., ... & Pelleg, M. (2012). A robust method of measuring other-race and other-ethnicity effects: The Cambridge Face Memory Test format. PLoS One, 7(10), e47956.
Hayward, W. G., Favelle, S. K., Oxner, M., Chu, M. H., & Lam, S. M. (2017). The other-race effect in face learning: Using naturalistic images to investigate face ethnicity effects in a learning paradigm. Quarterly Journal of Experimental Psychology, 70(5), 890-896.
Hancock, K. J., & Rhodes, G. (2008). Contact, configural coding and the other‐race effect in face recognition. British Journal of Psychology, 99(1), 45-56.
Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other‐race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728.
Zhou, X., Mondloch, C. J., Chien, S. H. L., & Moulson, M. C. (2022). Multi-cultural cities reduce disadvantages in recognizing naturalistic images of other-race faces: Evidence from a novel face learning task. Scientific Reports, 12(1), 8950.
Zhou, X., Elshiekh, A., & Moulson, M. C. (2019). Lifetime perceptual experience shapes face memory for own-and other-race faces. Visual Cognition, 27(9-10), 687-700.
Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A., & de Schonen, S. (2005). Reversibility of the other-race effect in face recognition during childhood. Psychological Science, 16(6), 440-444.
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in cognitive sciences, 6(6), 255-260.
Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. Journal of experimental psychology: general, 115(2), 107.
Rhodes, G., Brake, S., Taylor, K., & Tan, S. (1989). Expertise and configural coding in face recognition. British journal of psychology, 80(3), 313-331.
Yin, R. K. (1969). Looking at upside-down faces. Journal of experimental psychology, 81(1), 141.
Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29(2), 159-170.
Leder, H., & Bruce, V. (2000). When inverted faces are recognized: The role of configural information in face recognition. The Quarterly Journal of Experimental Psychology: Section A, 53(2), 513-536.
Leder, H., Candrian, G., Huber, O., & Bruce, V. (2001). Configural features in the context of upright and inverted faces. Perception, 30(1), 73-83.
Rhodes, G., Hayward, W. G., & Winkler, C. (2006). Expert face coding: Configural and component coding of own-race and other-race faces. Psychonomic bulletin & review, 13(3), 499-505.
Hayward, W. G., Rhodes, G., & Schwaninger, A. (2008). An own-race advantage for components as well as configurations in face recognition. Cognition, 106(2), 1017-1027.
Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245.
Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16(6), 747-759.
Robbins, R., & McKone, E. (2007). No face-like processing for objects-of-expertise in three behavioural tasks. Cognition, 103(1), 34-79.
Michel, C., Rossion, B., Han, J., Chung, C. S., & Caldara, R. (2006). Holistic processing is finely tuned for faces of one′s own race. Psychological science, 17(7), 608-615.
Rhodes, G., Locke, V., Ewing, L., & Evangelista, E. (2009). Race coding and the other-race effect in face recognition. Perception, 38(2), 232-241.
Rhodes, G., Lee, K., Palermo, R., Weiss, M., Yoshikawa, S., Clissa, P., ... & Jeffery, L. (2005). Attractiveness of own-race, other-race, and mixed-race faces. Perception, 34(3), 319-340.
Burke, D., Nolan, C., Hayward, W. G., Russell, R., & Sulikowski, D. (2013). Is there an own-race preference in attractiveness?. Evolutionary Psychology, 11(4), 147470491301100410.
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of neuroscience, 17(11), 4302-4311.
McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of cognitive neuroscience, 9(5), 605-610.
Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of cognitive neuroscience, 12(3), 495-504.
Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of neuroscience, 18(6), 2188-2199.
Yovel, G. (2016). Neural and cognitive face-selective markers: An integrative review. Neuropsychologia, 83, 5-13.
Kanwisher, N., & Barton, J. J. (2011). The functional architecture of the face system: Integrating evidence from fMRI and patient studies. The Oxford handbook of face perception, 111-129.
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in cognitive sciences, 4(6), 223-233.
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature neuroscience, 7(5), 555-562.
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition, 68(1), B1-B11.
Yovel, G., & Kanwisher, N. (2004). Face perception: domain specific, not process specific. Neuron, 44(5), 889-898.
Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current biology, 15(24), 2256-2262.
Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1476), 2109-2128.
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., ... & Tootell, R. B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences, 92(18), 8135-8139.
Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: an fMRI study. Journal of cognitive neuroscience, 22(1), 203-211.
Mazard, A., Schiltz, C., & Rossion, B. (2006). Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex. Neuropsychologia, 44(6), 912-922.
Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. Neuroimage, 32(3), 1385-1394.
Rossion, B., & Jacques, C. (2011). The N170: Understanding the time course of face perception in the human brain. The Oxford handbook of ERP components, 115-142.
Eimer, M. (2011). The face-sensitive N170 component of the event-related brain potential. The Oxford handbook of face perception, 28, 329-44.
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of cognitive neuroscience, 8(6), 551-565.
Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Neuroreport, 11(1), 69-72.
Bentin, S., Deouell, L.Y., 2000. Structural encoding and identification in face processing: ERP evidence for separate mechanisms. Cogn. Neuropsychol. 17 (1/2/3), 35–54.
Eimer, M., 2000. Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clin. Neurophysiol. 111 (4), 694–705.
Mooney, C. M. (1957). Age in the development of closure ability in children. Canadian Journal of Psychology/Revue canadienne de psychologie, 11(4), 219.
George, N., Jemel, B., Fiori, N., Chaby, L., & Renault, B. (2005). Electrophysiological correlates of facial decision: insights from upright and upside-down Mooney-face perception. Cognitive Brain Research, 24(3), 663-673.
Caharel, S., Leleu, A., Bernard, C., Viggiano, M. P., Lalonde, R., & Rebaï, M. (2013). Early holistic face-like processing of Arcimboldo paintings in the right occipito-temporal cortex: evidence from the N170 ERP component. International Journal of Psychophysiology, 90(2), 157-164.
Rossion, B., & Caharel, S. (2011). ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision research, 51(12), 1297-1311.
Di Russo, F., Martínez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human brain mapping, 15(2), 95-111.
Rossion, B., Delvenne, J. F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & Guérit, J. M. (1999). Spatio-temporal localization of the face inversion effect: an event-related potentials study. Biological psychology, 50(3), 173-189.
Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: Evidence from event-related brain potentials. Cognitive Brain Research, 10(1-2), 145-158.
Itier, R. J., & Taylor, M. J. (2002). Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces: a repetition study using ERPs. Neuroimage, 15(2), 353-372.
Jacques, C., & Rossion, B. (2007). Early electrophysiological responses to multiple face orientations correlate with individual discrimination performance in humans. Neuroimage, 36(3), 863-876.
Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. Neuroimage, 39(4), 1959-1979.
Letourneau, S. M., & Mitchell, T. V. (2008). Behavioral and ERP measures of holistic face processing in a composite task. Brain and cognition, 67(2), 234-245.
Jacques, C., & Rossion, B. (2009). The initial representation of individual faces in the right occipito-temporal cortex is holistic: Electrophysiological evidence from the composite face illusion. Journal of Vision, 9(6), 8-8.
Jacques, C., & Rossion, B. (2010). Misaligning face halves increases and delays the N170 specifically for upright faces: Implications for the nature of early face representations. Brain Research, 1318, 96-109.
Boutsen, L., Humphreys, G. W., Praamstra, P., & Warbrick, T. (2006). Comparing neural correlates of configural processing in faces and objects: an ERP study of the Thatcher illusion. Neuroimage, 32(1), 352-367.
Kloth, N., Itier, R. J., & Schweinberger, S. R. (2013). Combined effects of inversion and feature removal on N170 responses elicited by faces and car fronts. Brain and cognition, 81(3), 321-328.
Wiese, H. (2013). Do neural correlates of face expertise vary with task demands? Event-related potential correlates of own-and other-race face inversion. Frontiers in Human Neuroscience, 7, 898.
Marzi, T., & Viggiano, M. P. (2007). Interplay between familiarity and orientation in face processing: An ERP study. International Journal of Psychophysiology, 65(3), 182-192.
Itier, R. J., & Taylor, M. J. (2004). N170 or N1? Spatiotemporal differences between object and face processing using ERPs. Cerebral cortex, 14(2), 132-142.
Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive response profile of the human fusiform face area as determined by MEG. Cerebral cortex, 10(1), 69-81.
Sams, M., Hietanen, J. K., Hari, R., Ilmoniemi, R. J., & Lounasmaa, O. V. (1997). Face-specific responses from the human inferior occipito-temporal cortex. Neuroscience, 77(1), 49-55.
Itier, R. J., Herdman, A. T., George, N., Cheyne, D., & Taylor, M. J. (2006). Inversion and contrast-reversal effects on face processing assessed by MEG. Brain research, 1115(1), 108-120.
Schweinberger, S. R., Kaufmann, J. M., Moratti, S., Keil, A., & Burton, A. M. (2007). Brain responses to repetitions of human and animal faces, inverted faces, and objects—an MEG study. Brain research, 1184, 226-233.
Taylor, M. J., Bayless, S. J., Mills, T., & Pang, E. W. (2011). Recognising upright and inverted faces: MEG source localisation. Brain research, 1381, 167-174.
Xu, Y., Liu, J., & Kanwisher, N. (2005). The M170 is selective for faces, not for expertise. Neuropsychologia, 43(4), 588-597.
Morel, S., Ponz, A., Mercier, M., Vuilleumier, P., & George, N. (2009). EEG-MEG evidence for early differential repetition effects for fearful, happy and neutral faces. Brain Research, 1254, 84-98.\r Liu, J., Higuchi, M., Marantz, A., & Kanwisher, N. (2000). The selectivity of the occipitotemporal M170 for faces. Neuroreport, 11(2), 337-341.
Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: an MEG study. Nature Neuroscience, 5(9), 910-916.
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in cognitive sciences, 4(6), 223-233.
Senior, C. (2003). Beauty in the brain of the beholder. Neuron, 38(4), 525-528.
O’Doherty, J., Winston, J., Critchley, H., Perrett, D., Burt, D. M., & Dolan, R. J. (2003). Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia, 41(2), 147-155.
Kranz, F., & Ishai, A. (2006). Face perception is modulated by sexual preference. Current biology, 16(1), 63-68.
Winston, J. S., O’Doherty, J., Kilner, J. M., Perrett, D. I., & Dolan, R. J. (2007). Brain systems for assessing facial attractiveness. Neuropsychologia, 45(1), 195-206.
Cloutier, J., Heatherton, T. F., Whalen, P. J., & Kelley, W. M. (2008). Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. Journal of cognitive neuroscience, 20(6), 941-951.
Hahn, A. C., & Perrett, D. I. (2014). Neural and behavioral responses to attractiveness in adult and infant faces. Neuroscience & Biobehavioral Reviews, 46, 591-603.
Bzdok, D., Langner, R., Caspers, S., Kurth, F., Habel, U., Zilles, K., ... & Eickhoff, S. B. (2011). ALE meta-analysis on facial judgments of trustworthiness and attractiveness. Brain Structure and Function, 215, 209-223.
Mende-Siedlecki, P., Said, C. P., & Todorov, A. (2013). The social evaluation of faces: a meta-analysis of functional neuroimaging studies. Social cognitive and affective neuroscience, 8(3), 285-299.
Pochon, J. B., Riis, J., Sanfey, A. G., Nystrom, L. E., & Cohen, J. D. (2008). Functional imaging of decision conflict. Journal of Neuroscience, 28(13), 3468-3473.
Iaria, G., Fox, C. J., Waite, C. T., Aharon, I., & Barton, J. J. (2008). The contribution of the fusiform gyrus and superior temporal sulcus in processing facial attractiveness: neuropsychological and neuroimaging evidence. Neuroscience, 155(2), 409-422.
Chatterjee, A., Thomas, A., Smith, S. E., & Aguirre, G. K. (2009). The neural response to facial attractiveness. Neuropsychology, 23(2), 135.
Johnston, V. S., & Oliver‐Rodriguez, J. C. (1997). Facial beauty and the late positive component of event‐related potentials. Journal of Sex Research, 34(2), 188-198.
Werheid, K., Schacht, A., & Sommer, W. (2007). Facial attractiveness modulates early and late event-related brain potentials. Biological psychology, 76(1-2), 100-108.
Schacht, A., Werheid, K., & Sommer, W. (2008). The appraisal of facial beauty is rapid but not mandatory. Cognitive, Affective, & Behavioral Neuroscience, 8(2), 132-142.
Marzi, T., & Viggiano, M. P. (2010). When memory meets beauty: Insights from event-related potentials. Biological psychology, 84(2), 192-205.
Van Hooff, J. C., Crawford, H., & Van Vugt, M. (2011). The wandering mind of men: ERP evidence for gender differences in attention bias towards attractive opposite sex faces. Social cognitive and affective neuroscience, 6(4), 477-485.
Halit, H., de Haan, M., & Johnson, M. H. (2000). Modulation of event-related potentials by prototypical and atypical faces. Neuroreport, 11(9), 1871-1875.
Pizzagalli, D. A., Lehmann, D., Hendrick, A. M., Regard, M., Pascual-Marqui, R. D., & Davidson, R. J. (2002). Affective judgments of faces modulate early activity (∼ 160ms) within the fusiform gyri. Neuroimage, 16(3), 663-677.
Trujillo, L. T., Jankowitsch, J. M., & Langlois, J. H. (2014). Beauty is in the ease of the beholding: A neurophysiological test of the averageness theory of facial attractiveness. Cognitive, Affective, & Behavioral Neuroscience, 14, 1061-1076.
Ito, T. A., & Bartholow, B. D. (2009). The neural correlates of race. Trends in cognitive sciences, 13(12), 524-531.
Golby, A. J., Gabrieli, J. D., Chiao, J. Y., & Eberhardt, J. L. (2001). Differential responses in the fusiform region to same-race and other-race faces. Nature neuroscience, 4(8), 845-850.
Kim, J. S., Yoon, H. W., Kim, B. S., Jeun, S. S., Jung, S. L., & Choe, B. Y. (2006). Racial distinction of the unknown facial identity recognition mechanism by event-related fMRI. Neuroscience Letters, 397(3), 279-284.
Feng, L., Liu, J., Wang, Z., Li, J., Li, L., Ge, L., ... & Lee, K. (2011). The other face of the other-race effect: An fMRI investigation of the other-race face categorization advantage. Neuropsychologia, 49(13), 3739-3749.
Natu, V., Raboy, D., & O′Toole, A. J. (2011). Neural correlates of own-and other-race face perception: Spatial and temporal response differences. NeuroImage, 54(3), 2547-2555.
Liu, J., Wang, Z., Feng, L., Li, J., Tian, J., & Lee, K. (2015). Neural trade-offs between recognizing and categorizing own-and other-race faces. Cerebral Cortex, 25(8), 2191-2203.
Stahl, J., Wiese, H., & Schweinberger, S. R. (2008). Expertise and own-race bias in face processing: an event-related potential study. Neuroreport, 19(5), 583-587.
Caharel, S., Montalan, B., Fromager, E., Bernard, C., Lalonde, R., & Mohamed, R. (2011). Other-race and inversion effects during the structural encoding stage of face processing in a race categorization task: An event-related brain potential study. International Journal of Psychophysiology, 79(2), 266-271.
Montalan, B., Veujoz, M., Boitout, A., Leleu, A., Camus, O., Lalonde, R., & Rebaï, M. (2013). Investigation of effects of face rotation on race processing: An ERPs study. Brain and cognition, 81(3), 360-369.
Chen, Y., Pan, F., Wang, H., Xiao, S., & Zhao, L. (2013). Electrophysiological correlates of processing own-and other-race faces. Brain Topography, 26, 606-615.
Wiese, H., Kaufmann, J. M., & Schweinberger, S. R. (2014). The neural signature of the own-race bias: Evidence from event-related potentials. Cerebral Cortex, 24(3), 826-835.
Colombatto, C., & McCarthy, G. (2017). The effects of face inversion and face race on the P100 ERP. Journal of Cognitive Neuroscience, 29(4), 664-676.
Olson, I. R., & Marshuetz, C. (2005). Facial attractiveness is appraised in a glance. Emotion, 5(4), 498.
Willis, J., & Todorov, A. (2006). First impressions: Making up your mind after a 100-ms exposure to a face. Psychological science, 17(7), 592-598.
Saegusa, C., & Watanabe, K. (2016). Judgments of facial attractiveness as a combination of facial parts information over time: Social and aesthetic factors. Journal of Experimental Psychology: Human Perception and Performance, 42(2), 173.
Trenner, M. U., Schweinberger, S. R., Jentzsch, I., & Sommer, W. (2004). Face repetition effects in direct and indirect tasks: an event-related brain potentials study. Cognitive Brain Research, 21(3), 388-400.
Martens, U., Schweinberger, S. R., Kiefer, M., & Burton, A. M. (2006). Masked and unmasked electrophysiological repetition effects of famous faces. Brain Research, 1109(1), 146-157.
Henson, R. N., Mouchlianitis, E., Matthews, W. J., & Kouider, S. (2008). Electrophysiological correlates of masked face priming. Neuroimage, 40(2), 884-895.
Zhang, D., Wang, L., Luo, Y., & Luo, Y. (2012). Individual differences in detecting rapidly presented fearful faces. PloS one, 7(11), e49517.
Kiss, M., & Eimer, M. (2008). ERPs reveal subliminal processing of fearful faces. Psychophysiology, 45(2), 318-326.
Pegna, A. J., Darque, A., Berrut, C., & Khateb, A. (2011). Early ERP modulation for task-irrelevant subliminal faces. Frontiers in psychology, 2, 88.
Harris, J. A., Wu, C. T., & Woldorff, M. G. (2011). Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism. Journal of vision, 11(7), 3-3.
Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature neuroscience, 8(8), 1096-1101.
Stein, T., Hebart, M. N., & Sterzer, P. (2011). Breaking continuous flash suppression: A new measure of unconscious processing during interocular suppression?. Frontiers in human neuroscience, 5, 167.
Jiang, Y., Costello, P., & He, S. (2007). Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression. Psychological science, 18(4), 349-355.
Zhou, G., Zhang, L., Liu, J., Yang, J., & Qu, Z. (2010). Specificity of face processing without awareness. Consciousness and cognition, 19(1), 408-412.
Stein, T., Sterzer, P., & Peelen, M. V. (2012). Privileged detection of conspecifics: Evidence from inversion effects during continuous flash suppression. Cognition, 125(1), 64-79.
Stein, T., Reeder, R. R., & Peelen, M. V. (2016). Privileged access to awareness for faces and objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 42(6), 788.
Hung, S. M., Nieh, C. H., & Hsieh, P. J. (2016). Unconscious processing of facial attractiveness: Invisible attractive faces orient visual attention. Scientific Reports, 6(1), 37117.
Nakamura, K., & Kawabata, H. (2018). Preferential access to awareness of attractive faces in a breaking continuous flash suppression paradigm. Consciousness and Cognition, 65, 71-82.
Stein, T., End, A., & Sterzer, P. (2014). Own-race and own-age biases facilitate visual awareness of faces under interocular suppression. Frontiers in Human Neuroscience, 8, 582.
Yuan, J., Hu, X., Lu, Y., Bodenhausen, G. V., & Fu, S. (2017). Invisible own-and other-race faces presented under continuous flash suppression produce affective response biases. Consciousness and cognition, 48, 273-282.
Yuan, J., Hu, X., Chen, J., Bodenhausen, G. V., & Fu, S. (2019). One of us? how facial and symbolic cues to own-versus other-race membership influence access to perceptual awareness. Cognition, 184, 19-27.
Jiang, Y., & He, S. (2006). Cortical responses to invisible faces: dissociating subsystems for facial-information processing. Current Biology, 16(20), 2023-2029.
Jiang, Y. I., Shannon, R. W., Vizueta, N., Bernat, E. M., Patrick, C. J., & He, S. (2009). Dynamics of processing invisible faces in the brain: Automatic neural encoding of facial expression information. Neuroimage, 44(3), 1171-1177.
Sterzer, P., Jalkanen, L., & Rees, G. (2009). Electromagnetic responses to invisible face stimuli during binocular suppression. Neuroimage, 46(3), 803-808.
Yokoyama, T., Noguchi, Y., & Kita, S. (2013). Unconscious processing of direct gaze: Evidence from an ERP study. Neuropsychologia, 51(7), 1161-1168.
Suzuki, M., & Noguchi, Y. (2013). Reversal of the face-inversion effect in N170 under unconscious visual processing. Neuropsychologia, 51(3), 400-409.
Schlossmacher, I., Junghöfer, M., Straube, T., & Bruchmann, M. (2017). No differential effects to facial expressions under continuous flash suppression: An event-related potentials study. NeuroImage, 163, 276-285.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., ... & Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. neuroimage, 86, 446-460.
Crookes, K., Akindele-Obe, Z., & Rhodes, G. (2018, October). Attractiveness judgements for own-race vs other-race faces. Poster presented in the Annual Workshop of the ARC Centre of Excellence in Cognition and its Disorders (CCD), Sydney, Australia.
Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior research methods, instruments, & computers, 35, 116-124.
Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 1, pp. 1969-2012). New York: Wiley.
Pallier, C. (2002). Computing discriminability and bias with the R software.
JASP Team (2023). JASP (Version 0.17.2.1) [Computer software].
Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews, 41(1), 88-123.
Lapate, R. C., Rokers, B., Li, T., & Davidson, R. J. (2014). Nonconscious emotional activation colors first impressions: A regulatory role for conscious awareness. Psychological science, 25(2), 349-357.
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of neuroscience methods, 162(1-2), 8-13.
Miles, W. (1930). Ocular dominance in human adults. Journal of General Psychology, 4, 412-430.
Korb, S., Osimo, S. A., Suran, T., Goldstein, A., & Rumiati, R. I. (2017). Face proprioception does not modulate access to visual awareness of emotional faces in a continuous flash suppression paradigm. Consciousness and cognition, 51, 166-180.
Clark, A. (2015). Pillow (pil fork) documentation. readthedocs.
Schütt, H. H., Harmeling, S., Macke, J. H., & Wichmann, F. A. (2016). Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision research, 122, 105-123.
Hautus, M. J., Macmillan, N. A., & Creelman, C. D. (2021). Detection theory: A user′s guide. Routledge.
Kotsoni, E., Csibra, G., Mareschal, D., & Johnson, M. H. (2007). Electrophysiological correlates of common-onset visual masking. Neuropsychologia, 45(10), 2285-2293.
Amihai, I., Deouell, L., & Bentin, S. (2011). Conscious awareness is necessary for processing race and gender information from faces. Consciousness and cognition, 20(2), 269-279.
Kume, Y., Maekawa, T., Urakawa, T., Hironaga, N., Ogata, K., Shigyo, M., & Tobimatsu, S. (2016). Neuromagnetic evidence that the right fusiform face area is essential for human face awareness: an intermittent binocular rivalry study. Neuroscience research, 109, 54-62.
Senholzi, K. B., & Ito, T. A. (2013). Structural face encoding: How task affects the N170’s sensitivity to race. Social Cognitive and Affective Neuroscience, 8(8), 937-942.
Revers, H., Van Deun, K., Vroomen, J., & Bastiaansen, M. (2023). Neural responses to facial attractiveness: Event-related potentials differentiate between salience and valence effects. Biological Psychology, 179, 108549.
Zhang, L., Holzleitner, I. J., Lee, A. J., Wang, H., Han, C., Fasolt, V., ... & Jones, B. C. (2019). A data-driven test for cross-cultural differences in face preferences. Perception, 48(6), 487-499.
指導教授 吳嫻(Denise Hsien Wu) 審核日期 2024-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明