博碩士論文 109825002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.138.174.45
姓名 郭昱均(Yu-Jyun Guo)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 基頻輪廓和音樂經驗對嘈雜環境中語句辨識影響之行為和腦電波實驗
(Effects of Degraded-Fundamental Frequency Contour and Musician Experience on Speech Perception in Noisy Environment: Behavioral and Electroencephalography Experiments)
相關論文
★ 語音知覺與中文識字能力的關係★ 於虛擬環境中之雙耳時間差偵測機制研究
★ 母語為中文與英文者偵測頻率掃描訊號方向之事件相關腦電波研究★ 動態聽覺編碼在3D空間中的神經相關機制
★ 絕對音感能力對嘈雜環境中旋律和語句辨識影響之行為和腦造影研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-23以後開放)
摘要(中) 在噪音環境中的語句辨識(Speech-in-noise; SIN)對於日常溝通方面至關重要,尤其對於老年人和聽力障礙者特別具挑戰性。影響 SIN表現的關鍵因素之一是基頻(Fundamental frequency; F0)的輪廓。音樂家在音樂和語言領域中通常表現出更優異的基頻辨別能力,這可能有助於他們在噪音環境中辨識語句。然而,目前尚不清楚人們如何在缺乏基頻資訊的情況下跟蹤語句,以及音樂家在這種情況下是否具有優勢。為了釐清這些問題,我們進行了行為和腦電圖(EEG)實驗,對中文至關重要的聲調(Tone)和語調(Intonation)之基頻輪廓進行平調,藉以檢測在噪音環境中的語句辨識表現。此外,我們探討音樂家是否在缺乏基頻訊息的情況下具有語句辨識的優勢。
行為實驗探討基頻輪廓對音樂家和非音樂家在噪音中語句辨識表現的影響。實驗中測試30名音樂家和30名非音樂家在不同訊噪比(0, −5, −9 dB)的背景噪音下,對原始(Original)、平坦語調(Flat-intonation)、平坦聲調(Flat-tone)和全部平調(Flat-all)之基頻中文句子的理解度。音樂感知能力則以音樂能力測試(Profile of Music Perception Skills; PROMS)和音高辨別作業(Pitch discrimination task)來測量。結果顯示,平坦語調和平坦聲調的語句理解度相似,而全部平調的語句理解度最低。在噪音中,任何類型的平調基頻語句皆沒有發現到音樂家優勢,隨著訊噪比的增加,兩組的語句理解度都有所提高。音樂家展現出比非音樂家更小的基頻音高辨別閾值,且與噪音中語句理解度呈負相關。無論是否有音樂經驗,PROMS測試中音高和重音的處理能力均與語句理解度呈正相關。
EEG實驗測試在背景噪音中缺乏基頻輪廓對連續中文語句的神經跟蹤反應。三十名沒有音樂經驗的人在不同訊噪比(0, −9, −12 dB)的背景噪音下,聆聽具有原始、平坦聲調和全部平調輪廓的連續中文語句。我們使用以包絡線為特徵的時間響應函數(Temporal response function, TRF)模型,並擷取在δ(1–4 Hz)和θ頻段(4–8 Hz)中的神經語句跟蹤反應。受試者並完成音樂能力測試(PROMS)以及語句理解作業。結果顯示,約在200 ms和400 ms的δ頻段TRF峰值受到F0輪廓的影響,平坦聲調的語句比原始或全部平調的語句誘發了更大的峰值振幅。在θ頻段之TRF,則在約100 ms和200 ms的峰值看見訊噪比的影響,隨著訊噪比降低,峰值振幅增加且峰值延遲時間延長。處理音高的能力與對應不同基頻類型語句下的δ頻段TRF峰值呈負相關,而語句理解度與對應不同訊噪比中語句的θ頻段TRF峰值呈正相關。
實驗結果顯示,基頻輪廓顯著影響在噪音環境下語句辨識的行為和神經跟蹤反應。行為反應和神經跟蹤反應都受到語句中的F0輪廓類型和背景噪音程度的影響,這代表基頻資訊在語句辨識佔有重要性。雖然音樂經驗並未在理解缺乏基頻輪廓的語句方面提供優勢,但處理音高的能力可能提升在低噪音環境中的語句理解能力。研究結果未來期能應用在以音樂相關訓練來改善噪音環境中理解語句之能力,對老化及聽損相關族群有所助益。
摘要(英) Speech-in-noise (SIN) perception is critical for everyday communication and particularly challenging for the elderly and hearing impaired. A key factor influencing SIN perception is the fundamental frequency (F0) contour. Musicians often exhibit enhanced F0 discrimination in both music and language domains, which may contribute to their putative advantage in SIN perception. However, it is currently unclear how people track speech with degraded F0 information, and whether musicians confer an advantage in such conditions. To address these issues, we conducted behavioral and electroencephalography (EEG) experiments to examine speech perception in noisy environments, degrading the F0 contour at the level of tone and intonation critical for Mandarin speech. Additionally, we investigated whether musicians confer an advantage in speech perception with degraded F0 information.
The behavioral study examined the effects of F0 contour on speech-in-noise performance in musicians and non-musicians. Thirty musicians and 30 non-musicians were tested on the intelligibility of Mandarin Chinese sentences with original, flat-tone, flat-intonation, and flat-all F0 contours embedded in background noise under three signal-to-noise ratios (SNRs: 0, −5, −9 dB). Music perception skills were objectively measured using the Profile of Music Perception Skills (PROMS) and a pitch discrimination task. Results showed similar intelligibility for speech with flat-tone and flat-intonation contours, while the flat-all speech reduced intelligibility the most. No musician advantage was found for any type of flattened-F0 speech in noise, with improved speech intelligibility as SNR increased for both groups. Musicians exhibited smaller F0 pitch discrimination limens than non-musicians, which correlated with improved speech intelligibility in noise. Regardless of musician status, performance on pitch and accent PROMS test was linked to better speech understanding.
The EEG experiment investigated the neural tracking of continuous Mandarin speech with degraded F0 contour in background noise. Thirty non-musician participants listened to continuous Mandarin speech with natural, flat-tone, and flat-all F0 contours at three SNRs (0, −9, −12 dB). We employed the temporal response function (TRF) model with envelope as feature to index neural speech tracking in the delta (1–4 Hz) and theta frequency bands (4–8 Hz). Participants also completed an online speech comprehension task and an offline PROMS test for music perception skills. Results showed that delta band TRF peak response at around 200 ms and 400 ms was affected by F0 contour, with flat-tone speech inducing a greater peak amplitude compared to original or flat-all contours. The theta band TRF peak responses at around 100 ms and 200 ms were affected by SNR, with increased peak amplitude and delayed peak latency as SNR decreased. Speech intelligibility was significantly correlated to the theta band TRF response across SNR levels, while music tuning skills were significantly related to the delta band TRF response across F0 types.
These results demonstrate that degrading the F0 contours significantly impacts both behavioral and neural responses in speech-in-noise perception. Behavioral response and neural tracking of speech are influenced by both the type of F0 contour in speech and the level of background noise, highlighting the importance of F0 information in speech perception. While musician experience did not provide an advantage in comprehending speech with degraded F0 contours, pitch-related musical skills might improve speech perception in low-noise environments. These findings suggest the potential application of perceptual musical skills to enhance speech perception in challenging listening contexts.
關鍵字(中) ★ 腦電圖
★ 基頻
★ 音樂經驗
★ 音樂性
★ 噪音中語句感知
★ 時間響應函數
★ 聲調
★ 包絡線跟蹤
關鍵字(英) ★ Electroencephalography
★ Fundamental frequency
★ Musical experience
★ Musicality
★ Speech-in-noise perception
★ Temporal response function
★ Tone
★ Envelope tracking
論文目次 摘要 i
Abstract iii
Acknowledgments v
Table of Contents vii
List of Figures xi
List of Tables xiii
Appendix xiv
Chapter I General Introduction 1
1-1 Speech-in-noise perception 2
1-2 The role of F0 in speech perception 3
1-2-1 F0 information in speech 3
1-2-2 Behavioral studies on manipulated-F0 speech in noise perception 4
1-3 Musical ability and speech perception 6
1-4 Neural studies on manipulated-F0 speech in noise perception 8
1-5 Research aims 11
1-5-1 Motivations 11
1-5-2 Research questions 12
1-5-3 Hypothesis 13
Chapter II Behavioral Experiments 15
2-1 Introduction 15
2-2 Methods 15
2-2-1 Participants 15
2-2-2 Stimuli 16
2-2-3 Speech-in-noise task 18
2-2-4 F0 discrimination task 18
2-2-5 Profile of Music Perception Skills (PROMS) 19
2-3 Results 21
2-3-1 Participants’ characteristics 21
2-3-2 Speech intelligibility in noisy environments for musicians and non-musicians with degraded fundamental frequency contours 25
2-3-3 Relationship between musician experience and speech intelligibility 28
2-3-4 Relationship between pitch discrimination performance and speech intelligibility 30
2-4 Discussion 32
2-4-1 The limited benefits of musical training transfer to speech-in-noise perception 32
2-4-2 The relationship between pitch and accent perception and SIN performance 34
2-4-3 The contribution of tone and intonation in speech intelligibility 35
Chapter III Electroencephalography Experiments 36
3-1 Introduction 36
3-2 Methods 36
3-2-1 Participants 36
3-2-2 Stimuli 37
3-2-3 Behavioral task-PROMS 38
3-2-4 Experimental design 39
3-2-5 EEG data recording 42
3-2-6 EEG data preprocessing 42
3-2-7 Computation of speech envelope 43
3-2-8 Forward temporal response function (TRF) estimation 43
3-2-9 TRF prediction accuracy 44
3-2-10 Mass-univariate one sample t-test 45
3-2-11 Mass-univariate ANOVA 46
3-2-12 TRF response: peak amplitude and latency 47
3-2-13 Relationship between behavioral results and TRF response 47
3-3 Results 49
3-3-1 Participants’ characteristics 49
3-3-2 Behavioral performance 50
3-3-3 The influence of F0 type on delta band tracking of speech 53
3-3-4 F0 effects on delta band TRF peak amplitude and latency 55
3-3-5 The impact of SNR on theta band tracking of speech 59
3-3-6 Effects of SNR on theta band TRF peak amplitude and latency 62
3-3-7 Correlation between PROMS subtest performance and delta band TRF 64
3-3-8 Correlation between TRF responses and behavioral performance on speech recognition task 65
3-4 Discussion 67
3-4-1 F0 type effect on delta band TRF 68
3-4-2 SNR effect on theta band TRF 70
3-4-3 The interaction effect between F0 type and SNR was found on delta but not theta band TRF 70
3-4-4 Musicality vs. delta TRF response 73
3-4-5 The rhythm of speech structure and neural activity 73
Chapter IV General Discussion 75
Chapter V Conclusion and Future Directions 77
References 78
Appendix 87
參考文獻 Beckman, M. E., & Venditti, J. J. (2011). Intonation. The handbook of phonological theory, 485-532.
Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A: mathematical and general, 14(11), L453.
Bidelman, G. M., & Howell, M. (2016). Functional changes in inter-and intra-hemispheric cortical processing underlying degraded speech perception. NeuroImage, 124, 581-590.
Bidelman, G. M., Weiss, M. W., Moreno, S., & Alain, C. (2014). Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 40(4), 2662-2673.
Bidelman, G. M., & Yellamsetty, A. (2017). Noise and pitch interact during the cortical segregation of concurrent speech. Hearing Research, 351, 34-44.
Bidelman, G. M., & Yoo, J. (2020). Musicians show improved speech segregation in competitive, multi-talker cocktail party scenarios. Frontiers in Psychology, 11, 1927.
Binns, C., & Culling, J. F. (2007). The role of fundamental frequency contours in the perception of speech against interfering speech. The Journal of the Acoustical Society of America, 122(3), 1765-1776.
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. The Journal of the Acoustical Society of America, 137(1), 378-387.
Boersma, P. (2007). Praat: doing phonetics by computer. http://www.praat.org/.
Bowles, A. R., Chang, C. B., & Karuzis, V. P. (2016). Pitch ability as an aptitude for tone learning. Language Learning, 66(4), 774-808.
Bradlow, A. R., Kraus, N., & Hayes, E. (2003). Speaking clearly for children with learning disabilities. Journal of Speech, Language, and Hearing Research, 46(1), 80-97.
Bregman, A. S. (1994). Auditory scene analysis: The perceptual organization of sound. MIT press.
Brodbeck, C., Das, P., Gillis, M., Kulasingham, J. P., Bhattasali, S., Gaston, P., Resnik, P., & Simon, J. Z. (2023). Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions. Elife, 12, e85012.
Brodbeck, C., & Simon, J. Z. (2020). Continuous speech processing. Current Opinion in Physiology, 18, 25-31.
Burnham, D., Brooker, R., & Reid, A. (2015). The effects of absolute pitch ability and musical training on lexical tone perception. Psychology of Music, 43(6), 881-897.
Chao, Y. R. (1965). A grammar of spoken Chinese. (The University of California Press, 1965)
Chen, F., Wong, L. L., & Hu, Y. (2014). Effects of lexical tone contour on Mandarin sentence intelligibility. Journal of Speech, Language, and Hearing Research, 57(1), 338-345.
Chen, J., Yang, H., Wu, X., & Moore, B. C. (2018). The effect of F0 contour on the intelligibility of speech in the presence of interfering sounds for Mandarin Chinese. The Journal of the Acoustical Society of America, 143(2), 864-877.
Chen, S., Yang, Y., & Wayland, R. (2021). Categorical perception of Mandarin pitch directions by Cantonese-speaking musicians and non-musicians. Frontiers in Psychology, 12, 713949.
Chen, Y., Wong, L. L., Qian, J., Kuehnel, V., Voss, S. C., & Chen, F. (2020). The role of lexical tone information in the recognition of Mandarin sentences in listeners with hearing aids. Ear and Hearing, 41(3), 532-538.
Chuang, S.-Y., Wang, H.-M., & Tsao, Y. (2022). Improved lite audio-visual speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 1345-1359.
Clarke, J., Kazanoğlu, D., Başkent, D., & Gaudrain, E. (2017). Effect of F 0 contours on top-down repair of interrupted speech. The Journal of the Acoustical Society of America, 142(1), EL7-EL12.
Coffey, E., Herholz, S., Scala, S., & Zatorre, R. (2011). Montreal Music History Questionnaire: a tool for the assessment of music-related experience in music cognition research. The Neurosciences and Music IV: Learning and Memory, Conference. Edinburgh, UK,
Coffey, E. B., Chepesiuk, A. M., Herholz, S. C., Baillet, S., & Zatorre, R. J. (2017). Neural correlates of early sound encoding and their relationship to speech-in-noise perception. Frontiers in Neuroscience, 11, 283171.
Coffey, E. B., Mogilever, N. B., & Zatorre, R. J. (2017). Speech-in-noise perception in musicians: A review. Hearing Research, 352, 49-69.
Coffey, E. B., Nicol, T., White-Schwoch, T., Chandrasekaran, B., Krizman, J., Skoe, E., Zatorre, R. J., & Kraus, N. (2019). Evolving perspectives on the sources of the frequency-following response. Nature Communications, 10(1), 5036.
Crosse, M. J., Zuk, N. J., Di Liberto, G. M., Nidiffer, A. R., Molholm, S., & Lalor, E. C. (2021). Linear modeling of neurophysiological responses to speech and other continuous stimuli: methodological considerations for applied research. Frontiers in Neuroscience, 15, 705621.
Cutler, A., Dahan, D., & Van Donselaar, W. (1997). Prosody in the comprehension of spoken language: A literature review. Language and Speech, 40(2), 141-201.
Das, N., Bertrand, A., & Francart, T. (2018). EEG-based auditory attention detection: boundary conditions for background noise and speaker positions. Journal of Neural Engineering, 15(6), 066017.
der Nederlanden, C. M. V. B., Joanisse, M. F., & Grahn, J. A. (2020). Music as a scaffold for listening to speech: Better neural phase-locking to song than speech. NeuroImage, 214, 116767.
Ding, N., Melloni, L., Zhang, H., Tian, X., & Poeppel, D. (2016). Cortical tracking of hierarchical linguistic structures in connected speech. Nature Neuroscience, 19(1), 158-164.
Ding, N., Patel, A. D., Chen, L., Butler, H., Luo, C., & Poeppel, D. (2017). Temporal modulations in speech and music. Neuroscience & Biobehavioral Reviews, 81, 181-187.
Ding, N., & Simon, J. Z. (2014). Cortical entrainment to continuous speech: functional roles and interpretations. Frontiers in Human Neuroscience, 8, 311.
Du, Y., & Zatorre, R. J. (2017). Musical training sharpens and bonds ears and tongue to hear speech better. Proceedings of the National Academy of Sciences, 114(51), 13579-13584.
Etard, O., & Reichenbach, T. (2019). Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise. Journal of Neuroscience, 39(29), 5750-5759.
Fields, E. C., & Kuperberg, G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data. Psychophysiology, 57(2), e13468.
Fuller, C. D., Galvin III, J. J., Maat, B., Free, R. H., & Başkent, D. (2014). The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations? Frontiers in Neuroscience, 8, 179.
Gelfer, M. P., & Mikos, V. A. (2005). The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels. Journal of Voice, 19(4), 544-554.
Gillis, M., Decruy, L., Vanthornhout, J., & Francart, T. (2022). Hearing loss is associated with delayed neural responses to continuous speech. European Journal of Neuroscience, 55(6), 1671-1690.
Gillis, M., Van Canneyt, J., Francart, T., & Vanthornhout, J. (2022). Neural tracking as a diagnostic tool to assess the auditory pathway. Hearing Research, 426, 108607.
Girding, E., Zhang, J., & Svantesson, J.-O. (1983). A generative model for tone and intonation in Standard Chinese. Working Papers (Lund University: Department of Linguistics), 25, 53-65.
Gordon, E. (1989). Advanced measures of music audiation. Gia Publications.
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711-1725.
Han, H. J., Munson, B., & Schlauch, R. S. (2021). Fundamental frequency range and other acoustic factors that might contribute to the clear-speech benefit. The Journal of the Acoustical Society of America, 149(3), 1685-1698.
Hennessy, S., Mack, W. J., & Habibi, A. (2022). Speech‐in‐noise perception in musicians and non‐musicians: A multi‐level meta-analysis. Hearing Research, 416, 108442.
Hopkins, K., & Moore, B. C. (2011). The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. The Journal of the Acoustical Society of America, 130(1), 334-349.
Hsieh, I. H., & Guo, Y. J. (2023). No musician advantage in the perception of degraded-fundamental frequency speech in noisy environments. Journal of Speech Language and Hearing Research, 66(8), 2643-2655.
Hu, G., Determan, S. C., Dong, Y., Beeve, A. T., Collins, J. E., & Gai, Y. (2020). Spectral and temporal envelope cues for human and automatic speech recognition in noise. Journal of the Association for Research in Otolaryngology, 21, 73-87.
Irsik, V. C., Almanaseer, A., Johnsrude, I. S., & Herrmann, B. (2021). Cortical responses to the amplitude envelopes of sounds change with age. Journal of Neuroscience, 41(23), 5045-5055.
Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biology, 16(3), e2004473.
Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in Psychtoolbox-3? Perception, 36(14).
Kovács, P., Tóth, B., Honbolygó, F., Szalárdy, O., Kohári, A., Mády, K., Magyari, L., & Winkler, I. (2023). Speech prosody supports speaker selection and auditory stream segregation in a multi-talker situation. Brain Research, 1805, 148246.
Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599-605.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621-647.
Lad, M., Holmes, E., Chu, A., & Griffiths, T. D. (2020). Speech-in-noise detection is related to auditory working memory precision for frequency. Scientific Reports, 10(1), 13997.
Law, L. N., & Zentner, M. (2012). Assessing musical abilities objectively: Construction and validation of the profile of music perception skills. PloS One, 7(12), e52508.
Li, W., & Yang, Y. (2009). Perception of prosodic hierarchical boundaries in Mandarin Chinese sentences. Neuroscience, 158(4), 1416-1425.
Liu, F., Jiang, C., Wang, B., Xu, Y., & Patel, A. D. (2015). A music perception disorder (congenital amusia) influences speech comprehension. Neuropsychologia, 66, 111-118.
Madsen, S. M., Dau, T., & Oxenham, A. J. (2021). No interaction between fundamental-frequency differences and spectral region when perceiving speech in a speech background. PloS One, 16(4), e0249654.
Madsen, S. M., Marschall, M., Dau, T., & Oxenham, A. J. (2019). Speech perception is similar for musicians and non-musicians across a wide range of conditions. Scientific Reports, 9(1), 10404.
Madsen, S. M., Whiteford, K. L., & Oxenham, A. J. (2017). Musicians do not benefit from differences in fundamental frequency when listening to speech in competing speech backgrounds. Scientific Reports, 7(1), 12624.
Maggu, A. R., Lau, J. C., Waye, M. M., & Wong, P. C. (2021). Combination of absolute pitch and tone language experience enhances lexical tone perception. Scientific Reports, 11(1), 1485.
Mai, G., & Wang, W. S. (2019). Delta and theta neural entrainment during phonological and semantic processing in speech perception. bioRxiv, 556837.
Mäkelä, A. M., Alku, P., Mäkinen, V., & Tiitinen, H. (2004). Glides in speech fundamental frequency are reflected in the auditory N1m response. NeuroReport, 15(7), 1205-1208.
Mäkelä, A. M., Alku, P., Mäkinen, V., Valtonen, J., May, P., & Tiitinen, H. (2002). Human cortical dynamics determined by speech fundamental frequency. NeuroImage, 17(3), 1300-1305.
Mankel, K., Barber, J., & Bidelman, G. M. (2020). Auditory categorical processing for speech is modulated by inherent musical listening skills. NeuroReport, 31(2), 162.
Mankel, K., & Bidelman, G. M. (2018). Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences, 115(51), 13129-13134.
Marie, C., Delogu, F., Lampis, G., Belardinelli, M. O., & Besson, M. (2011). Influence of musical expertise on segmental and tonal processing in Mandarin Chinese. Journal of Cognitive Neuroscience, 23(10), 2701-2715.
Martínez-Montes, E., Hernández-Pérez, H., Chobert, J., Morgado-Rodríguez, L., Suárez-Murias, C., Valdés-Sosa, P. A., & Besson, M. (2013). Musical expertise and foreign speech perception. Frontiers in Systems Neuroscience, 7, 84.
Mattys, S. L., Davis, M. H., Bradlow, A. R., & Scott, S. K. (2013). Speech recognition in adverse conditions: A review. Speech Recognition in Adverse Conditions, 1-26.
Micheyl, C., Delhommeau, K., Perrot, X., & Oxenham, A. J. (2006). Influence of musical and psychoacoustical training on pitch discrimination. Hearing Research, 219(1-2), 36-47.
Miettinen, I., Alku, P., Salminen, N., May, P. J., & Tiitinen, H. (2011). Responsiveness of the human auditory cortex to degraded speech sounds: reduction of amplitude resolution vs. additive noise. Brain Research, 1367, 298-309.
Miller, S. E., Schlauch, R. S., & Watson, P. J. (2010). The effects of fundamental frequency contour manipulations on speech intelligibility in background noise. The Journal of the Acoustical Society of America, 128(1), 435-443.
Millman, R. E., Woods, W. P., & Quinlan, P. T. (2011). Functional asymmetries in the representation of noise-vocoded speech. NeuroImage, 54(3), 2364-2373.
Mohammadi, Y., Graversen, C., Manresa, J. B., Østergaard, J., & Andersen, O. K. (2024). Effects of background noise and linguistic violations on frontal theta oscillations during effortful listening. Ear and Hearing, 45(3), 721-729.
Müllensiefen, D., Gingras, B., Musil, J., & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PloS One, 9(2), e89642.
Muncke, J., Kuruvila, I., & Hoppe, U. (2022). Prediction of speech intelligibility by means of EEG responses to sentences in Noise. Frontiers in Neuroscience, 16, 876421.
Musacchia, G., Strait, D., & Kraus, N. (2008). Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 241(1-2), 34-42.
Musso, M., Fürniss, H., Glauche, V., Urbach, H., Weiller, C., & Rijntjes, M. (2020). Musicians use speech-specific areas when processing tones: The key to their superior linguistic competence? Behavioural Brain Research, 390, 112662.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
Parbery-Clark, A., Strait, D. L., Anderson, S., Hittner, E., & Kraus, N. (2011). Musical experience and the aging auditory system: implications for cognitive abilities and hearing speech in noise. PloS One, 6(5), e18082.
Parbery‐Clark, A., Marmel, F., Bair, J., & Kraus, N. (2011). What subcortical–cortical relationships tell us about processing speech in noise. European Journal of Neuroscience, 33(3), 549-557.
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 142.
Patel, A. D. (2012). The OPERA hypothesis: assumptions and clarifications. Annals of the New York Academy of Sciences, 1252(1), 124-128.
Patel, A. D., Xu, Y., & Wang, B. (2010). The role of F0 variation in the intelligibility of Mandarin sentences. Proceedings of Speech Prosody 2010, 1-4.
Poeppel, D., & Assaneo, M. F. (2020). Speech rhythms and their neural foundations. Nature Reviews Neuroscience, 21(6), 322-334.
Schellenberg, E. G., & Lima, C. F. (2024). Music Training and Nonmusical Abilities. Annual Review of Psychology, 75(1), 87-128.
Scherer, K. R. (2003). Vocal communication of emotion: A review of research paradigms. Speech Communication, 40(1-2), 227-256.
Schilling, A., Tziridis, K., Schulze, H., & Krauss, P. (2021). The stochastic resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition. Progress in Brain Research, 262, 139-157.
Schumacher, P. B., & Baumann, S. (2010). Pitch accent type affects the N400 during referential processing. NeuroReport, 21(9), 618-622.
Shahin, A. J. (2011). Neurophysiological influence of musical training on speech perception. Frontiers in Psychology, 2, 126.
Shen, J., & Souza, P. E. (2019). The ability to glimpse dynamic pitch in noise by younger and older listeners. The Journal of the Acoustical Society of America, 146(3), EL232-EL237.
Slater, J., & Kraus, N. (2016). The role of rhythm in perceiving speech in noise: A comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 17, 79-87.
Sloboda, J. A., Davidson, J. W., Howe, M. J., & Moore, D. G. (1996). The role of practice in the development of performing musicians. British Journal of Psychology, 87(2), 287-309.
Song, F., Zhan, Y., Ford, J. C., Cai, D.-C., Fellows, A. M., Shan, F., Song, P., Chen, G., Soli, S. D., & Shi, Y. (2020). Increased right frontal brain activity during the mandarin hearing-in-noise test. Frontiers in Neuroscience, 14, 614012.
Steinhauer, K., Alter, K., & Friederici, A. D. (1999). Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nature Neuroscience, 2(2), 191-196.
Tabri, D., Chacra, K. M. S. A., & Pring, T. (2015). Speech perception in noise by monolingual, bilingual and trilingual listeners. International Journal of Language & Communication Disorders, 46, 411-422.
Tang, W., Xiong, W., Zhang, Y.-x., Dong, Q., & Nan, Y. (2016). Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 91, 247-253.
Teoh, E. S., Cappelloni, M. S., & Lalor, E. C. (2019). Prosodic pitch processing is represented in delta-band EEG and is dissociable from the cortical tracking of other acoustic and phonetic features. European Journal of Neuroscience, 50(11), 3831-3842.
Vaissière, J. (2005). Perception of intonation. In D.B. Pisoni & R.E. Remez (Eds.), The Handbook of Speech Perception (pp. 236-263). Oxford, Blackwell Publishing.
Verschueren, E., Gillis, M., Decruy, L., Vanthornhout, J., & Francart, T. (2022). Speech understanding oppositely affects acoustic and linguistic neural tracking in a speech rate manipulation paradigm. Journal of Neuroscience, 42(39), 7442-7453.
Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188-196.
Wang, J., Shu, H., Zhang, L., Liu, Z., & Zhang, Y. (2013). The roles of fundamental frequency contours and sentence context in Mandarin Chinese speech intelligibility. The Journal of the Acoustical Society of America, 134(1), EL91-EL97.
Wang, L., Bastiaansen, M., Yang, Y., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49(5), 813-820.
Wong, F. C., Chandrasekaran, B., Garibaldi, K., & Wong, P. C. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31(24), 8780-8785.
Wong, P. C., Jin, J. X., Gunasekera, G. M., Abel, R., Lee, E. R., & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693-703.
Wong, P. C., & Perrachione, T. K. (2007). Learning pitch patterns in lexical identification by native English-speaking adults. Applied Psycholinguistics, 28(4), 565-585.
Wu, H., Ma, X., Zhang, L., Liu, Y., Zhang, Y., & Shu, H. (2015). Musical experience modulates categorical perception of lexical tones in native Chinese speakers. Frontiers in Psychology, 6, 436.
Wu, M. (2019). Effect of F0 contour on perception of Mandarin Chinese speech against masking. PloS One, 14(1), e0209976.
Xu, G., Zhang, L., Shu, H., Wang, X., & Li, P. (2013). Access to lexical meaning in pitch-flattened Chinese sentences: An fMRI study. Neuropsychologia, 51(3), 550-556.
Yang, X., Wang, K., & Shamma, S. A. (1992). Auditory representations of acoustic signals. IEEE Transactions on Information Theory, 38(2), 824-839.
Yasmin, S., Irsik, V. C., Johnsrude, I. S., & Herrmann, B. (2023). The effects of speech masking on neural tracking of acoustic and semantic features of natural speech. Neuropsychologia, 186, 108584.
Zarate, J. M., Ritson, C. R., & Poeppel, D. (2012). Pitch-interval discrimination and musical expertise: Is the semitone a perceptual boundary? The Journal of the Acoustical Society of America, 132(2), 984-993.
Zendel, B. R., & Alain, C. (2009). Concurrent sound segregation is enhanced in musicians. Journal of Cognitive Neuroscience, 21(8), 1488-1498.
Zendel, B. R., Tremblay, C.-D., Belleville, S., & Peretz, I. (2015). The impact of musicianship on the cortical mechanisms related to separating speech from background noise. Journal of Cognitive Neuroscience, 27(5), 1044-1059.
Zhang, J. D., Susino, M., McPherson, G. E., & Schubert, E. (2020). The definition of a musician in music psychology: A literature review and the six-year rule. Psychology of Music, 48(3), 389-409.
Zhang, X., Li, J., Li, Z., Hong, B., Diao, T., Ma, X., Nolte, G., Engel, A. K., & Zhang, D. (2023). Leading and following: Noise differently affects semantic and acoustic processing during naturalistic speech comprehension. NeuroImage, 282, 120404.
Zheng, Y., Gao, P., & Li, X. (2023). The modulating effect of musical expertise on lexical‐semantic prediction in speech‐in‐noise comprehension: Evidence from an EEG study. Psychophysiology, 60(11), e14371.
Zhu, J., Chen, X., & Yang, Y. (2021). Effects of amateur musical experience on categorical perception of lexical tones by native Chinese adults: an ERP study. Frontiers in Psychology, 12, 611189.
Zou, J., Feng, J., Xu, T., Jin, P., Luo, C., Zhang, J., Pan, X., Chen, F., Zheng, J., & Ding, N. (2019). Auditory and language contributions to neural encoding of speech features in noisy environments. NeuroImage, 192, 66-75.
指導教授 謝宜蕙(I-Hui Hsieh) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明