參考文獻 |
1. Augustinack, J. C., Huber, K. E., Stevens, A. A., Roy, M., Frosch, M. P., van der Kouwe, A. J. W., Wald, L. L., Van Leemput, K., McKee, A. C., Fischl, B., & Alzheimer’s Disease Neuroimaging Initiative. (2013). Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. NeuroImage, 64, 32–42. https://doi.org/10.1016/j.neuroimage.2012.08.071
2. Avants, B. B., Tustison, N., & Johnson, H. (2009). Advanced Normalization Tools (ANTS).
3. Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don’t know: A neural organization of uncertainty estimates. Nature Reviews Neuroscience, 13(8), 572–586.
4. Baker, C. I., Olson, C. R., & Behrmann, M. (2004). Role of Attention and Perceptual Grouping in Visual Statistical Learning. Psychological Science, 15(7), 460–466. https://doi.org/10.1111/j.0956-7976.2004.00702.x
5. Barak, O., Rigotti, M., & Fusi, S. (2013). The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(9), 3844–3856. https://doi.org/10.1523/JNEUROSCI.2753-12.2013
6. Bear, M. F., Connors, B. W., & Paradiso, M. A. (2016). Neuroscience: Exploring the brain (4. ed). Wolters Kluwer.
7. Benson, N. C., Butt, O. H., Brainard, D. H., & Aguirre, G. K. (2014). Correction of Distortion in Flattened Representations of the Cortical Surface Allows Prediction of V1-V3 Functional Organization from Anatomy. PLoS Computational Biology, 10(3), e1003538. https://doi.org/10.1371/journal.pcbi.1003538
8. Benson, N. C., & Winawer, J. (2018). Bayesian analysis of retinotopic maps. eLife, 7, e40224. https://doi.org/10.7554/eLife.40224
9. Bogaerts, L., Siegelman, N., & Frost, R. (2016). Splitting the variance of statistical learning performance: A parametric investigation of exposure duration and transitional probabilities. Psychonomic Bulletin & Review, 23(4), 1250–1256. https://doi.org/10.3758/s13423-015-0996-z
10. Borzello, M., Ramirez, S., Treves, A., Lee, I., Scharfman, H., Stark, C., Knierim, J. J., & Rangel, L. M. (2023). Assessments of dentate gyrus function: Discoveries and debates. Nature Reviews. Neuroscience, 24(8), 502–517. https://doi.org/10.1038/s41583-023-00710-z
11. Bulgarelli, F., Weiss, D. J., & Dennis, N. A. (2021). Cross-situational statistical learning in younger and older adults. Aging, Neuropsychology, and Cognition, 28(3), 346–366. https://doi.org/10.1080/13825585.2020.1759502
12. Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., Wei, B., Veshkini, M., La-Vu, M., Lou, J., Flores, S. E., Kim, I., Sano, Y., Zhou, M., Baumgaertel, K., Lavi, A., Kamata, M., Tuszynski, M., Mayford, M., … Silva, A. J. (2016). A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605), 115–118. https://doi.org/10.1038/nature17955
13. Campbell, K. L., Zimerman, S., Healey, M. K., Lee, M. M. S., & Hasher, L. (2012). Age differences in visual statistical learning. Psychology and Aging, 27(3), 650–656. https://doi.org/10.1037/a0026780
14. Canada, K. L., Ngo, C. T., Newcombe, N. S., Geng, F., & Riggins, T. (2019). It’s All in the Details: Relations Between Young Children’s Developing Pattern Separation Abilities and Hippocampal Subfield Volumes. Cerebral Cortex, 29(8), 3427–3433. https://doi.org/10.1093/cercor/bhy211
15. Cattell, R. B. (1940). A culture-free intelligence test. I. Journal of Educational Psychology, 31(3), 161–179. https://doi.org/10.1037/h0059043
16. Chomsky, N. (1959). [Review of Review of Verbal behavior, by B. F. Skinner]. Language, 35(1), 26–58. https://doi.org/10.2307/411334
17. Choucry, A., Nomoto, M., & Inokuchi, K. (2024). Engram mechanisms of memory linking and identity. Nature Reviews. Neuroscience, 25(6), 375–392. https://doi.org/10.1038/s41583-024-00814-0
18. Christiansen, M. H. (2019). Implicit Statistical Learning: A Tale of Two Literatures. Topics in Cognitive Science, 11(3), 468–481. https://doi.org/10.1111/tops.12332
19. Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998). Learning to Segment Speech Using Multiple Cues: A Connectionist Model. Language and Cognitive Processes, 13(2–3), 221–268. https://doi.org/10.1080/016909698386528
20. Cohen, N. J., & Squire, L. R. (1980). Preserved Learning and Retention of Pattern-Analyzing Skill in Amnesia: Dissociation of Knowing How and Knowing That. Science, 210(4466), 207–210. https://doi.org/10.1126/science.7414331
21. Conway, C. M., & Christiansen, M. H. (2005). Modality-Constrained Statistical Learning of Tactile, Visual, and Auditory Sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 24–39. https://doi.org/10.1037/0278-7393.31.1.24
22. Conway, C. M., & Christiansen, M. H. (2006). Statistical Learning Within and Between Modalities: Pitting Abstract Against Stimulus-Specific Representations. Psychological Science, 17(10), 905–912. https://doi.org/10.1111/j.1467-9280.2006.01801.x
23. Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal-lobe excision. Neuropsychologia, 6(3), 255–265. https://doi.org/10.1016/0028-3932(68)90024-9
24. Corsi, P. M. (1972). Human memory and the medial temporal region of the brain (Vol. 34, Issues 2-B, p. 891). ProQuest Information & Learning.
25. Covington, N. V., Brown-Schmidt, S., & Duff, M. C. (2018). The Necessity of the Hippocampus for Statistical Learning. Journal of Cognitive Neuroscience, 30(5), 680–697. https://doi.org/10.1162/jocn_a_01228
26. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114; discussion 114-185. https://doi.org/10.1017/s0140525x01003922
27. Cox, J. A., & Aimola Davies, A. M. (2022). Age differences in visual statistical learning: Investigating the effects of selective attention and stimulus category. Psychology and Aging, 37(6), 698–714. https://doi.org/10.1037/pag0000697
28. Cox, R. W. (1996). AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Computers and Biomedical Research, 29(3), 162–173. https://doi.org/10.1006/cbmr.1996.0014
29. Cox, R. W. (2019). Equitable Thresholding and Clustering: A Novel Method for Functional Magnetic Resonance Imaging Clustering in AFNI. Brain Connectivity, 9(7), 529–538. https://doi.org/10.1089/brain.2019.0666
30. DeKraker, J., Haast, R. A. M., Yousif, M. D., Karat, B., Lau, J. C., Köhler, S., & Khan, A. R. (2022). Automated hippocampal unfolding for morphometry and subfield segmentation with HippUnfold. eLife, 11, e77945. https://doi.org/10.7554/eLife.77945
31. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021
32. Duncan, K. D., & Schlichting, M. L. (2018). Hippocampal representations as a function of time, subregion, and brain state. Neurobiology of Learning and Memory, 153, 40–56. https://doi.org/10.1016/j.nlm.2018.03.006
33. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1016/0364-0213(90)90002-E
34. Emberson, L. L., Conway, C. M., & Christiansen, M. H. (2011). Timing is everything: Changes in presentation rate have opposite effects on auditory and visual implicit statistical learning. Quarterly Journal of Experimental Psychology, 64(5), 1021–1040. https://doi.org/10.1080/17470218.2010.538972
35. Endress, A. D., & Bonatti, L. L. (2007). Rapid learning of syllable classes from a perceptually continuous speech stream. Cognition, 105(2), 247–299. https://doi.org/10.1016/j.cognition.2006.09.010
36. Endress, A. D., & Bonatti, L. L. (2016). Words, rules, and mechanisms of language acquisition. WIREs Cognitive Science, 7(1), 19–35. https://doi.org/10.1002/wcs.1376
37. Erickson, L. C., Kaschak, M. P., Thiessen, E. D., & Berry, C. A. S. (2016). Individual Differences in Statistical Learning: Conceptual and Measurement Issues. Collabra, 2(1). https://doi.org/10.1525/collabra.41
38. Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: A robust preprocessing pipeline for functional MRI. Nature Methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-0235-4
39. Farrell Pagulayan, K., Busch, R. M., Medina, K. L., Bartok, J. A., & Krikorian, R. (2006). Developmental normative data for the Corsi Block-tapping task. Journal of Clinical and Experimental Neuropsychology, 28(6), 1043–1052. https://doi.org/10.1080/13803390500350977
40. Favila, S. E., Chanales, A. J. H., & Kuhl, B. A. (2016). Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nature Communications, 7, 11066. https://doi.org/10.1038/ncomms11066
41. Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021
42. Fischl, B., Stevens, A. A., Rajendran, N., Yeo, B. T. T., Greve, D. N., Van Leemput, K., Polimeni, J. R., Kakunoori, S., Buckner, R. L., Pacheco, J., Salat, D. H., Melcher, J., Frosch, M. P., Hyman, B. T., Grant, P. E., Rosen, B. R., van der Kouwe, A. J. W., Wiggins, G. C., Wald, L. L., & Augustinack, J. C. (2009). Predicting the location of entorhinal cortex from MRI. NeuroImage, 47(1), 8–17. https://doi.org/10.1016/j.neuroimage.2009.04.033
43. Fiser, J., & Aslin, R. N. (2001). Unsupervised Statistical Learning of Higher-Order Spatial Structures from Visual Scenes. Psychological Science, 12(6), 499–504. https://doi.org/10.1111/1467-9280.00392
44. Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. https://doi.org/10.1016/S1053-8119(09)70884-5
45. Forest, T. A., Schlichting, M. L., Duncan, K. D., & Finn, A. S. (2023). Changes in statistical learning across development. Nature Reviews Psychology, 2(4), 205–219. https://doi.org/10.1038/s44159-023-00157-0
46. French, R. M., Mareschal, D., Mermillod, M., & Quinn, P. C. (2004). The Role of Bottom-Up Processing in Perceptual Categorization by 3- to 4-Month-Old Infants: Simulations and Data. Journal of Experimental Psychology: General, 133(3), 382–397. https://doi.org/10.1037/0096-3445.133.3.382
47. Frost, R., Armstrong, B. C., & Christiansen, M. H. (2019). Statistical learning research: A critical review and possible new directions. Psychological Bulletin, 145(12), 1128–1153. https://doi.org/10.1037/bul0000210
48. Frost, R., Armstrong, B. C., Siegelman, N., & Christiansen, M. H. (2015). Domain generality versus modality specificity: The paradox of statistical learning. Trends in Cognitive Sciences, 19(3), 117–125. https://doi.org/10.1016/j.tics.2014.12.010
49. Gheysen, F., Gevers, W., De Schutter, E., Van Waelvelde, H., & Fias, W. (2009). Disentangling perceptual from motor implicit sequence learning with a serial color-matching task. Experimental Brain Research, 197(2), 163–174. https://doi.org/10.1007/s00221-009-1902-6
50. Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2010). Hippocampal contribution to early and later stages of implicit motor sequence learning. Experimental Brain Research, 202(4), 795–807. https://doi.org/10.1007/s00221-010-2186-6
51. Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2011). The Neural Basis of Implicit Perceptual Sequence Learning. Frontiers in Human Neuroscience, 5. https://doi.org/10.3389/fnhum.2011.00137
52. Goldstein, R., & Vitevitch, M. S. (2014). The influence of clustering coefficient on word-learning: How groups of similar sounding words facilitate acquisition. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01307
53. Gómez, R. L. (2002). Variability and Detection of Invariant Structure. Psychological Science, 13(5), 431–436. https://doi.org/10.1111/1467-9280.00476
54. Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., Nichols, T. E., Pellman, J., … Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1), Article 1. https://doi.org/10.1038/sdata.2016.44
55. Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060
56. Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & Pollmann, S. (2009). PyMVPA: A Python Toolbox for Multivariate Pattern Analysis of fMRI Data. Neuroinformatics, 7(1), 37–53. https://doi.org/10.1007/s12021-008-9041-y
57. Harrison, L. M., Duggins, A., & Friston, K. J. (2006). Encoding uncertainty in the hippocampus. Neural Networks: The Official Journal of the International Neural Network Society, 19(5), 535–546. https://doi.org/10.1016/j.neunet.2005.11.002
58. Hasson, U. (2017). The neurobiology of uncertainty: Implications for statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160048. https://doi.org/10.1098/rstb.2016.0048
59. Hasson, U., Chen, J., & Honey, C. J. (2015). Hierarchical process memory: Memory as an integral component of information processing. Trends in Cognitive Sciences, 19(6), 304–313. https://doi.org/10.1016/j.tics.2015.04.006
60. Hauser, M. D., Newport, E. L., & Aslin, R. N. (2001). Segmentation of the speech stream in a non-human primate: Statistical learning in cotton-top tamarins. Cognition, 78(3), B53–B64. https://doi.org/10.1016/S0010-0277(00)00132-3
61. Hebb, D. O. (1949). The organization of behavior; a neuropsychological theory (pp. xix, 335). Wiley.
62. Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11(7), 523–532. https://doi.org/10.1038/nrn2850
63. Hindy, N. C., Ng, F. Y., & Turk-Browne, N. B. (2016). Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nature Neuroscience, 19(5), 665–667. https://doi.org/10.1038/nn.4284
64. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554
65. Howard, D. V., & Howard, J. H. (1989). Age differences in learning serial patterns: Direct versus indirect measures. Psychology and Aging, 4(3), 357–364. https://doi.org/10.1037/0882-7974.4.3.357
66. Howard, D. V., & Howard, J. H. (1992). Adult age differences in the rate of learning serial patterns: Evidence from direct and indirect tests. Psychology and Aging, 7(2), 232–241. https://doi.org/10.1037/0882-7974.7.2.232
67. Howard, J. H., & Howard, D. V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12(4), 634–656. https://doi.org/10.1037//0882-7974.12.4.634
68. Howard, J. H., & Howard, D. V. (2013). Aging mind and brain: Is implicit learning spared in healthy aging? Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00817
69. Ihle-Hansen, H., Vigen, T., Berge, T., Einvik, G., Aarsland, D., Rønning, O. M., Thommessen, B., Røsjø, H., Tveit, A., & Ihle-Hansen, H. (2018). Montreal Cognitive Assessment in a 63- to 65-year-old Norwegian Cohort from the General Population: Data from the Akershus Cardiac Examination 1950 Study. Dementia and Geriatric Cognitive Disorders Extra, 7(3), 318–327. https://doi.org/10.1159/000480496
70. Isbilen, E. S., McCauley, S. M., Kidd, E., & Christiansen, M. H. (2020). Statistically Induced Chunking Recall: A Memory-Based Approach to Statistical Learning. Cognitive Science, 44(7), e12848. https://doi.org/10.1111/cogs.12848
71. Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: Correlated or complicated? Cortex, 49(8), 2001–2006. https://doi.org/10.1016/j.cortex.2013.02.012
72. Janacsek, K., & Nemeth, D. (2015). The puzzle is complicated: When should working memory be related to implicit sequence learning, and when should it not? (Response to Martini et al.). Cortex, 64, 411–412. https://doi.org/10.1016/j.cortex.2014.07.020
73. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. https://doi.org/10.1016/s1053-8119(02)91132-8
74. Karuza, E. A., Emberson, L. L., Roser, M. E., Cole, D., Aslin, R. N., & Fiser, J. (2017). Neural Signatures of Spatial Statistical Learning: Characterizing the Extraction of Structure from Complex Visual Scenes. Journal of Cognitive Neuroscience, 29(12), 1963–1976. https://doi.org/10.1162/jocn_a_01182
75. Karuza, E. A., Thompson-Schill, S. L., & Bassett, D. S. (2016). Local Patterns to Global Architectures: Influences of Network Topology on Human Learning. Trends in Cognitive Sciences, 20(8), 629–640. https://doi.org/10.1016/j.tics.2016.06.003
76. Kassambara, A. (2023). Rstatix: Pipe-Friendly Framework for Basic Statistical Tests_. R package version 0.7.2. https://CRAN.R-project.org/package=rstatix
77. Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B. (2014). Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences, 111(24), 8997–9002. https://doi.org/10.1073/pnas.1319438111
78. Kim, G., Norman, K. A., & Turk-Browne, N. B. (2017). Neural Differentiation of Incorrectly Predicted Memories. The Journal of Neuroscience, 37(8), 2022–2031. https://doi.org/10.1523/JNEUROSCI.3272-16.2017
79. Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42. https://doi.org/10.1016/S0010-0277(02)00004-5
80. Kirwan, C. B., Hartshorn, A., Stark, S. M., Goodrich-Hunsaker, N. J., Hopkins, R. O., & Stark, C. E. L. (2012). Pattern separation deficits following damage to the hippocampus. Neuropsychologia, 50(10), 2408–2414. https://doi.org/10.1016/j.neuropsychologia.2012.06.011
81. Kirwan, C. B., & Stark, C. E. L. (2007). Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learning & Memory (Cold Spring Harbor, N.Y.), 14(9), 625–633. https://doi.org/10.1101/lm.663507
82. Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Chaibub Neto, E., & Keshavan, A. (2017). Mindboggling morphometry of human brains. PLOS Computational Biology, 13(2), e1005350. https://doi.org/10.1371/journal.pcbi.1005350
83. Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol. Frontiers in Neuroscience, 6. https://doi.org/10.3389/fnins.2012.00171
84. Knowlton, B. J., Squire, L. R., & Gluck, M. A. (1994). Probabilistic classification learning in amnesia. Learning & Memory, 1(2), 106–120. https://doi.org/10.1101/lm.1.2.106
85. Kóbor, A., Horváth, K., Kardos, Z., Nemeth, D., & Janacsek, K. (2020). Perceiving structure in unstructured stimuli: Implicitly acquired prior knowledge impacts the processing of unpredictable transitional probabilities. Cognition, 205, 104413. https://doi.org/10.1016/j.cognition.2020.104413
86. Kóbor, A., Janacsek, K., Hermann, P., Zavecz, Z., Varga, V., Csépe, V., Vidnyánszky, Z., Kovacs, G., & Nemeth, D. (2022). Finding pattern in the noise: Persistent implicit statistical knowledge impacts the processing of unpredictable stimuli [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/axq49
87. Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex. Neuron, 75(2), 265–270. https://doi.org/10.1016/j.neuron.2012.04.034
88. Kriegeskorte, N. (2008). Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience. https://doi.org/10.3389/neuro.06.004.2008
89. Liao, Y. C., Yeh, T. L., Yang, Y. K., Lu, F.-H., Chang, C.-J., Ko, H. C., & Lo, C. M. (2004). Reliability and validation of the Taiwan geriatric depression scale. Taiwanese Journal of Psychiatry, 18, 30–41.
90. Lu, J.-F. R., Tseng, H.-M., & Tsai, Y.-J. (2003). Assessment of health-related quality of life in Taiwan (I): Development and psychometric testing of SF-36 Taiwan version. Taiwan Journal of Public Health, 22(6), 501–511.
91. Lukács, Á., & Kemény, F. (2015). Development of Different Forms of Skill Learning Throughout the Lifespan. Cognitive Science, 39(2), 383–404. https://doi.org/10.1111/cogs.12143
92. Manns, J. R., Howard, M. W., & Eichenbaum, H. (2007). Gradual changes in hippocampal activity support remembering the order of events. Neuron, 56(3), 530–540. https://doi.org/10.1016/j.neuron.2007.08.017
93. Marr, D. (1971). Simple Memory: A Theory for Archicortex. Philosophical Transactions of the Royal Society of London Series B, 262(841), 23–81.
94. Martini, M., Sachse, P., Furtner, M. R., & Gaschler, R. (2015). Why should working memory be related to incidentally learned sequence structures? Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 64, 407–410. https://doi.org/10.1016/j.cortex.2014.05.016
95. Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101–B111. https://doi.org/10.1016/S0010-0277(01)00157-3
96. McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457. https://doi.org/10.1037/0033-295X.102.3.419
97. McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage, 61(4), 1277–1286. https://doi.org/10.1016/j.neuroimage.2012.03.068
98. Meulemans, T., & Van der Linden, M. (1997). Associative chunk strength in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23(4), 1007–1028. https://doi.org/10.1037/0278-7393.23.4.1007
99. Midford, R., & Kirsner, K. (2005). Implicit and Explicit Learning in Aged and Young Adults. Aging, Neuropsychology, and Cognition, 12(4), 359–387. https://doi.org/10.1080/13825580500246894
100. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
101. Milner, B. (1966). Amnesia following operation on the temporal lobes. Amnesia, 109–133.
102. Milner, B., Corkin, S., & Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia, 6(3), 215–234. https://doi.org/10.1016/0028-3932(68)90021-3
103. Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature, 335(6193), 817–820. https://doi.org/10.1038/335817a0
104. Miyashita, Y. (1993). Inferior temporal cortex: Where visual perception meets memory. Annual Review of Neuroscience, 16, 245–263. https://doi.org/10.1146/annurev.ne.16.030193.001333
105. Molitor, R. J., Sherrill, K. R., Morton, N. W., Miller, A. A., & Preston, A. R. (2021). Memory Reactivation during Learning Simultaneously Promotes Dentate Gyrus/CA 2,3 Pattern Differentiation and CA 1 Memory Integration. The Journal of Neuroscience, 41(4), 726–738. https://doi.org/10.1523/JNEUROSCI.0394-20.2020
106. Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. NeuroImage, 59(3), 2636–2643. https://doi.org/10.1016/j.neuroimage.2011.08.076
107. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
108. Neger, T. M., Rietveld, T., & Janse, E. (2014). Relationship between perceptual learning in speech and statistical learning in younger and older adults. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00628
109. Neger, T. M., Rietveld, T., & Janse, E. (2015). Adult age effects in auditory statistical learning. 18th International Congress of Phonetic Sciences (ICPhS 2015). https://doi.org/10/component/file_2195943/ICPHS0124.pdf
110. Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32. https://doi.org/10.1016/0010-0285(87)90002-8
111. Palmer, S. D., Hutson, J., & Mattys, S. L. (2018). Statistical Learning for Speech Segmentation: Age-Related Changes and Underlying Mechanisms. Psychology and Aging, 33(7), 1035–1044. https://doi.org/10.1037/pag0000292
112. Park, D. C., & Reuter-Lorenz, P. (2009). The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 60(1), 173–196. https://doi.org/10.1146/annurev.psych.59.103006.093656
113. Peña, M., Bonatti, L. L., Nespor, M., & Mehler, J. (2002). Signal-driven computations in speech processing. Science (New York, N.Y.), 298(5593), 604–607. https://doi.org/10.1126/science.1072901
114. Perruchet, P. (2019). What Mechanisms Underlie Implicit Statistical Learning? Transitional Probabilities Versus Chunks in Language Learning. Topics in Cognitive Science, 11(3), 520–535. https://doi.org/10.1111/tops.12403
115. Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10(5), 233–238. https://doi.org/10.1016/j.tics.2006.03.006
116. Perruchet, P., & Vinter, A. (1998). PARSER: A Model for Word Segmentation. Journal of Memory and Language, 39(2), 246–263. https://doi.org/10.1006/jmla.1998.2576
117. Poldrack, R. A., & Rodriguez, P. (2004). How do memory systems interact? Evidence from human classification learning. Neurobiology of Learning and Memory, 82(3), 324–332. https://doi.org/10.1016/j.nlm.2004.05.003
118. Raslau, F. D., Mark, I. T., Klein, A. P., Ulmer, J. L., Mathews, V., & Mark, L. P. (2015). Memory Part 2: The Role of the Medial Temporal Lobe. American Journal of Neuroradiology, 36(5), 846–849. https://doi.org/10.3174/ajnr.A4169
119. Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855–863. https://doi.org/10.1016/S0022-5371(67)80149-X
120. Reber, A. S. (1976). Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental Psychology: Human Learning and Memory, 2(1), 88–94. https://doi.org/10.1037/0278-7393.2.1.88
121. Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51(10), 2026–2042. https://doi.org/10.1016/j.neuropsychologia.2013.06.019
122. Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic Plasticity: How Memory Retrieval Drives Learning. Trends in Cognitive Sciences, 23(9), 726–742. https://doi.org/10.1016/j.tics.2019.06.007
123. Rogerson, T., Cai, D. J., Frank, A., Sano, Y., Shobe, J., Lopez-Aranda, M. F., & Silva, A. J. (2014). Synaptic tagging during memory allocation. Nature Reviews. Neuroscience, 15(3), 157–169. https://doi.org/10.1038/nrn3667
124. Rosenthal, C. R., Andrews, S. K., Antoniades, C. A., Kennard, C., & Soto, D. (2016). Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex. Current Biology, 26(6), 834–841. https://doi.org/10.1016/j.cub.2016.01.040
125. Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical Learning by 8-Month-Old Infants. Science, 274(5294), 1926–1928. https://doi.org/10.1126/science.274.5294.1926
126. Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition, 70(1), 27–52. https://doi.org/10.1016/s0010-0277(98)00075-4
127. Saffran, J. R., Newport, E. L., Aslin, R. N., Tunick, R. A., & Barrueco, S. (1997). Incidental language learning: Listening (and learning) out of the corner of your ear. Psychological Science, 8(2), 101–105. https://doi.org/10.1111/j.1467-9280.1997.tb00690.x
128. Saffran, J. R., & Thiessen, E. D. (2007). Domain-General Learning Capacities. In E. Hoff & M. Shatz (Eds.), Blackwell Handbook of Language Development (pp. 68–86). Blackwell Publishing Ltd. https://doi.org/10.1002/9780470757833.ch4
129. Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The Necessity of the Medial Temporal Lobe for Statistical Learning. Journal of Cognitive Neuroscience, 26(8), 1736–1747. https://doi.org/10.1162/jocn_a_00578
130. Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of Object Representations in the Human Medial Temporal Lobe Based on Temporal Regularities. Current Biology, 22(17), 1622–1627. https://doi.org/10.1016/j.cub.2012.06.056
131. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). Neural representations of events arise from temporal community structure. Nature Neuroscience, 16(4), 486–492. https://doi.org/10.1038/nn.3331
132. Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160049. https://doi.org/10.1098/rstb.2016.0049
133. Schapiro, A. C., Turk-Browne, N. B., Norman, K. A., & Botvinick, M. M. (2016). Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26(1), 3–8. https://doi.org/10.1002/hipo.22523
134. Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013–1025. https://doi.org/10.1016/s0896-6273(03)00123-5
135. Schevenels, K., Altvater-Mackensen, N., Zink, I., De Smedt, B., & Vandermosten, M. (2021). Aging effects and feasibility of statistical learning tasks across modalities. Aging, Neuropsychology, and Cognition, 30(2), 201–230. https://doi.org/10.1080/13825585.2021.2007213
136. Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6(1), 8151. https://doi.org/10.1038/ncomms9151
137. Scoville, W. B., & Milner, B. (1957). LOSS OF RECENT MEMORY AFTER BILATERAL HIPPOCAMPAL LESIONS. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 11–21. https://doi.org/10.1136/jnnp.20.1.11
138. Sherman, B. E., & Turk-Browne, N. B. (2020). Statistical prediction of the future impairs episodic encoding of the present. Proceedings of the National Academy of Sciences, 117(37), 22760–22770. https://doi.org/10.1073/pnas.2013291117
139. Siegelman, N., Bogaerts, L., Elazar, A., Arciuli, J., & Frost, R. (2018). Linguistic entrenchment: Prior knowledge impacts statistical learning performance. Cognition, 177, 198–213. https://doi.org/10.1016/j.cognition.2018.04.011
140. Siegelman, N., Bogaerts, L., & Frost, R. (2017). Measuring individual differences in statistical learning: Current pitfalls and possible solutions. Behavior Research Methods, 49(2), 418–432. https://doi.org/10.3758/s13428-016-0719-z
141. Siegelman, N., Bogaerts, L., & Frost, R. (2019). What Determines Visual Statistical Learning Performance? Insights From Information Theory. Cognitive Science, 43(12), e12803. https://doi.org/10.1111/cogs.12803
142. Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105–120. https://doi.org/10.1016/j.jml.2015.02.001
143. Staresina, B. P., & Davachi, L. (2009). Mind the Gap: Binding Experiences across Space and Time in the Human Hippocampus. Neuron, 63(2), 267–276. https://doi.org/10.1016/j.neuron.2009.06.024
144. Stark, S. M., Kirwan, C. B., & Stark, C. E. L. (2019). Mnemonic Similarity Task: A Tool for Assessing Hippocampal Integrity. Trends in Cognitive Sciences, 23(11), 938–951. https://doi.org/10.1016/j.tics.2019.08.003
145. Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51(12), 2442–2449. https://doi.org/10.1016/j.neuropsychologia.2012.12.014
146. Thiessen, E. D. (2017). What’s statistical about learning? Insights from modelling statistical learning as a set of memory processes. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160056. https://doi.org/10.1098/rstb.2016.0056
147. Thiessen, E. D., & Erickson, L. C. (2013). Beyond Word Segmentation: A Two- Process Account of Statistical Learning. Current Directions in Psychological Science, 22(3), 239–243. https://doi.org/10.1177/0963721413476035
148. Thiessen, E. D., Kronstein, A. T., & Hufnagle, D. G. (2013). The extraction and integration framework: A two-process account of statistical learning. Psychological Bulletin, 139(4), 792–814. https://doi.org/10.1037/a0030801
149. Thiessen, E. D., & Pavlik, P. I. (2013). iMinerva: A Mathematical Model of Distributional Statistical Learning. Cognitive Science, 37(2), 310–343. https://doi.org/10.1111/cogs.12011
150. Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). mediation: R package for causal mediation analysis. UCLA Statistics/American Statistical Association. https://dspace.mit.edu/handle/1721.1/91154
151. Treves, A., & Rolls, E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2(2), 189–199. https://doi.org/10.1002/hipo.450020209
152. Tsai, C.-F., Lee, W.-J., Wang, S.-J., Shia, B.-C., Nasreddine, Z., & Fuh, J.-L. (2012). Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: Validation of the Taiwanese version of the MoCA and an item response theory analysis. International Psychogeriatrics, 24(4), 651–658. https://doi.org/10.1017/S1041610211002298
153. Tseng, H.-M., Lu, J.-F. R., & Tsai, Y.-J. (2003). Assessment of health-related quality of life in Taiwan (II): Norming and validation of SF-36 Taiwan version. Taiwan Journal of Public Health, 22(6), 512–518.
154. Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural Evidence of Statistical Learning: Efficient Detection of Visual Regularities Without Awareness. Journal of Cognitive Neuroscience, 21(10), 1934–1945. https://doi.org/10.1162/jocn.2009.21131
155. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit Perceptual Anticipation Triggered by Statistical Learning. The Journal of Neuroscience, 30(33), 11177–11187. https://doi.org/10.1523/JNEUROSCI.0858-10.2010
156. Turk-Browne, N., Jungé, J., & Scholl, B. (2005). The Automaticity of Visual Statistical Learning. Journal of Experimental Psychology. General, 134, 552–564. https://doi.org/10.1037/0096-3445.134.4.552
157. Turner, B. O. (2010). A comparison of methods for the use of pattern classification on rapid event-related fMRI data. [Poster]. Annual Meeting of the Society for Neuroscience.
158. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29(6), 1310–1320. https://doi.org/10.1109/TMI.2010.2046908
159. Voss, J. L., Bridge, D. J., Cohen, N. J., & Walker, J. A. (2017). A Closer Look at the Hippocampus and Memory. Trends in Cognitive Sciences, 21(8), 577–588. https://doi.org/10.1016/j.tics.2017.05.008
160. Wammes, J., Norman, K. A., & Turk-Browne, N. (2022). Increasing stimulus similarity drives nonmonotonic representational change in hippocampus. eLife, 11, e68344. https://doi.org/10.7554/eLife.68344
161. Ware, Jr., J. E., & Gandek, B. (1994). The SF-36 Health Survey: Development and Use in Mental Health Research and the IQOLA Project. International Journal of Mental Health, 23(2), 49–73. https://doi.org/10.1080/00207411.1994.11449283
162. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), Article 6684. https://doi.org/10.1038/30918
163. Wechsler, D. (1997a). Wechsler Adult Intelligence Scale—Third Edition (WAIS-III). San Antonio, TX: The Psychological Corporation.
164. Wechsler, D. (1997b). Wechsler Memory Scale—Third Edition (WMS-III). San Antonio, TX: The Psychological Corporation.
165. Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. Trends in Neurosciences, 34(10), 515–525. https://doi.org/10.1016/j.tins.2011.06.006
166. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 37–49. https://doi.org/10.1016/0022-3956(82)90033-4
167. Yu, C., & Smith, L. B. (2007). Rapid word learning under uncertainty via cross-situational statistics. Psychological Science, 18(5), 414–420. https://doi.org/10.1111/j.1467-9280.2007.01915.x
168. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45–57. https://doi.org/10.1109/42.906424 |